Early Zebrafish Embryogenesis Is Susceptible to Developmental TDCPP Exposure

Background: Chlorinated phosphate esters (CPEs) are widely used as additive flame retardants for low-density polyurethane foams and have frequently been detected at elevated concentrations within indoor environmental media. Objectives: To begin characterizing the potential toxicity of CPEs on early...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental health perspectives 2012-11, Vol.120 (11), p.1585-1591
Hauptverfasser: McGee, Sean P., Cooper, Ellen M., Stapleton, Heather M., Volz, David C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: Chlorinated phosphate esters (CPEs) are widely used as additive flame retardants for low-density polyurethane foams and have frequently been detected at elevated concentrations within indoor environmental media. Objectives: To begin characterizing the potential toxicity of CPEs on early vertebrate development, we examined the developmental toxicity of four CPEs used in polyurethane foam: tris(1,3-dichloro-2-propyl) phosphate (TDCPP), tris(2-chloroethyl) phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCPP), and 2,2-bis(chloromethyl)propane-1,3-diyl tetrakis(2-chlorethyl) bis(phosphate) (V6). Methods: Using zebrafish as a model for vertebrate embryogenesis, we first screened the potential teratogenic effects of TDCPP, TCEP, TCPP, and V6 using a developmental toxicity assay. Based on these results, we focused on identification of susceptible windows of developmental TDCPP exposure as well as evaluation of uptake and elimination of TDCPP and bis(1,3-dichloro-2-propyl) phosphate (BDCPP, the primary metabolite) within whole embryos. Finally, because TDCPP-specific genotoxicity assays have, for the most part, been negative in vivo and because zygotic genome remethylation is a key biological event during cleavage, we investigated whether TDCPP altered the status of zygotic genome methylation during early zebrafish embryogenesis. Results: Overall, our findings suggest that the cleavage period during zebrafish embryogenesis is susceptible to TDCPP-induced delays in remethylation of the zygotic genome, a mechanism that may be associated with enhanced developmental toxicity following initiation of TDCPP exposure at the start of cleavage. Conclusions: Our results suggest that further research is needed to better understand the effects of a widely used and detected CPE within susceptible windows of early vertebrate development.
ISSN:0091-6765
1552-9924
DOI:10.1289/ehp.1205316