Biomimetic diversity-oriented synthesis of benzannulated medium rings via ring expansion
Medium-sized ring structures can provide unique entry points into natural product–like chemical space but are synthetically challenging to access. A biologically inspired method eases these challenges, employing a dearomatization-rearomatization sequence to form a diverse library of rings from tailo...
Gespeichert in:
Veröffentlicht in: | Nature chemical biology 2013-01, Vol.9 (1), p.21-29 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Medium-sized ring structures can provide unique entry points into natural product–like chemical space but are synthetically challenging to access. A biologically inspired method eases these challenges, employing a dearomatization-rearomatization sequence to form a diverse library of rings from tailored bicyclic compounds.
Nature has exploited medium-sized 8- to 11-membered rings in a variety of natural products to address diverse and challenging biological targets. However, owing to the limitations of conventional cyclization-based approaches to medium-ring synthesis, these structures remain severely underrepresented in current probe and drug discovery efforts. To address this problem, we have established an alternative, biomimetic ring expansion approach to the diversity-oriented synthesis of medium-ring libraries. Oxidative dearomatization of bicyclic phenols affords polycyclic cyclohexadienones that undergo efficient ring expansion to form benzannulated medium-ring scaffolds found in natural products. The ring expansion reaction can be induced using three complementary reagents that avoid competing dienone-phenol rearrangements and is driven by rearomatization of a phenol ring adjacent to the scissile bond. Cheminformatic analysis of the resulting first-generation library confirms that these molecules occupy chemical space overlapping with medium-ring natural products and distinct from that of synthetic drugs and drug-like libraries. |
---|---|
ISSN: | 1552-4450 1552-4469 |
DOI: | 10.1038/nchembio.1130 |