Divergent Molecular Evolution of the Mitochondrial Sulfhydryl:Cytochrome c Oxidoreductase Erv in Opisthokonts and Parasitic Protists

Mia40 and the sulfhydryl:cytochrome c oxidoreductase Erv1/ALR are essential for oxidative protein import into the mitochondrial intermembrane space in yeast and mammals. Although mitochondrial protein import is functionally conserved in the course of evolution, many organisms seem to lack Mia40. Mor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2013-01, Vol.288 (4), p.2676-2688
Hauptverfasser: Eckers, Elisabeth, Petrungaro, Carmelina, Gross, Dominik, Riemer, Jan, Hell, Kai, Deponte, Marcel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mia40 and the sulfhydryl:cytochrome c oxidoreductase Erv1/ALR are essential for oxidative protein import into the mitochondrial intermembrane space in yeast and mammals. Although mitochondrial protein import is functionally conserved in the course of evolution, many organisms seem to lack Mia40. Moreover, except for in organello import studies and in silico analyses, nothing is known about the function and properties of protist Erv homologues. Here we compared Erv homologues from yeast, the kinetoplastid parasite Leishmania tarentolae, and the non-related malaria parasite Plasmodium falciparum. Both parasite proteins have altered cysteine motifs, formed intermolecular disulfide bonds in vitro and in vivo, and could not replace Erv1 from yeast despite successful mitochondrial protein import in vivo. To analyze its enzymatic activity, we established the expression and purification of recombinant full-length L. tarentolae Erv and compared the mechanism with related and non-related flavoproteins. Enzyme assays indeed confirmed an electron transferase activity with equine and yeast cytochrome c, suggesting a conservation of the enzymatic activity in different eukaryotic lineages. However, although Erv and non-related flavoproteins are intriguing examples of convergent molecular evolution resulting in similar enzyme properties, the mechanisms of Erv homologues from parasitic protists and opisthokonts differ significantly. In summary, the Erv-mediated reduction of cytochrome c might be highly conserved throughout evolution despite the apparent absence of Mia40 in many eukaryotes. Nevertheless, the knowledge on mitochondrial protein import in yeast and mammals cannot be generally transferred to all other eukaryotes, and the corresponding pathways, components, and mechanisms remain to be analyzed. Background: The machinery for protein import into the mitochondrial intermembrane space has been studied in mammals, yeast, and plants. Results: Protist Erv homologues are conserved sulfhydryl:cytochrome c oxidoreductases with altered mechanisms. Conclusion: The composition and mechanism of the mitochondrial protein import machinery differs between eukaryotic lineages. Significance: The current knowledge on mitochondrial protein import cannot be generally transferred to all eukaryotes.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M112.420745