Direct Observation of Phenylalanine Orientations in Statherin Bound to Hydroxyapatite Surfaces
Extracellular biomineralization proteins such as salivary statherin control the growth of hydroxyapatite (HAP), the principal component of teeth and bones. Despite the important role that statherin plays in the regulation of hard tissue formation in humans, the surface recognition mechanisms involve...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2012-05, Vol.134 (21), p.8750-8753 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Extracellular biomineralization proteins such as salivary statherin control the growth of hydroxyapatite (HAP), the principal component of teeth and bones. Despite the important role that statherin plays in the regulation of hard tissue formation in humans, the surface recognition mechanisms involved are poorly understood. The protein–surface interaction likely involves very specific contacts between the surface atoms and the key protein side chains. This study demonstrates for the first time the power of combining near-edge X-ray absorption fine structure (NEXAFS) spectroscopy with element labeling to quantify the orientation of individual side chains. In this work, the 15 amino acid N-terminal binding domain of statherin has been adsorbed onto HAP surfaces, and the orientations of phenylalanine rings F7 and F14 have been determined using NEXAFS analysis and fluorine labels at individual phenylalanine sites. The NEXAFS-derived phenylalanine tilt angles have been verified with sum frequency generation spectroscopy. |
---|---|
ISSN: | 0002-7863 1520-5126 1520-5126 |
DOI: | 10.1021/ja301711w |