Metformin inhibition of mTORC1 activation, DNA synthesis and proliferation in pancreatic cancer cells: Dependence on glucose concentration and role of AMPK

► Metformin inhibits cancer cell growth but the mechanism(s) are not understood. ► We show that the potency of metformin is sharply dependent on glucose in the medium. ► AMPK activation was enhanced in cancer cells incubated in physiological glucose. ► Reciprocally, metformin potently inhibited mTOR...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2013-01, Vol.430 (1), p.352-357
Hauptverfasser: Sinnett-Smith, James, Kisfalvi, Krisztina, Kui, Robert, Rozengurt, Enrique
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:► Metformin inhibits cancer cell growth but the mechanism(s) are not understood. ► We show that the potency of metformin is sharply dependent on glucose in the medium. ► AMPK activation was enhanced in cancer cells incubated in physiological glucose. ► Reciprocally, metformin potently inhibited mTORC1, DNA synthesis and proliferation. ► Metformin, at low concentrations, inhibited DNA synthesis through AMPK. Metformin, a widely used anti-diabetic drug, is emerging as a potential anticancer agent but the mechanisms involved remain incompletely understood. Here, we demonstrate that the potency of metformin induced AMPK activation, as shown by the phosphorylation of its substrates acetyl-CoA carboxylase (ACC) at Ser79 and Raptor at Ser792, was dramatically enhanced in human pancreatic ductal adenocarcinoma (PDAC) cells PANC-1 and MiaPaCa-2 cultured in medium containing physiological concentrations of glucose (5mM), as compared with parallel cultures in medium with glucose at 25mM. In physiological glucose, metformin inhibited mTORC1 activation, DNA synthesis and proliferation of PDAC cells stimulated by crosstalk between G protein-coupled receptors and insulin/IGF signaling systems, at concentrations (0.05–0.1mM) that were 10–100-fold lower than those used in most previous reports. Using siRNA-mediated knockdown of the α1 and α2 catalytic subunits of AMPK, we demonstrated that metformin, at low concentrations, inhibited DNA synthesis through an AMPK-dependent mechanism. Our results emphasize the importance of using medium containing physiological concentrations of glucose to elucidate the anticancer mechanism of action of metformin in pancreatic cancer cells and other cancer cell types.
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2012.11.010