Use of the Cytokinesis-Blocked Micronucleus Assay to Detect Gender Differences and Genetic Instability in a Lung Cancer Case―Control Study

Although tobacco exposure is the predominant risk factor for lung cancer, other environmental agents are established lung carcinogens. Measuring the genotoxic effect of environmental exposures remains equivocal, as increases in morbidity and mortality may be attributed to coexposures such as smoking...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer epidemiology, biomarkers & prevention biomarkers & prevention, 2013-01, Vol.22 (1), p.135-145
Hauptverfasser: MCHUGH, Michelle K, LOPEZ, Mirtha S, HO, Chung-Han, SPITZ, Margaret R, ETZEL, Carol J, EL-ZEIN, Randa A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although tobacco exposure is the predominant risk factor for lung cancer, other environmental agents are established lung carcinogens. Measuring the genotoxic effect of environmental exposures remains equivocal, as increases in morbidity and mortality may be attributed to coexposures such as smoking. We evaluated genetic instability and risk of lung cancer associated with exposure to environmental agents (e.g., exhaust) and smoking among 500 lung cancer cases and 500 controls using the cytokinesis-blocked micronucleus (CBMN) assay. Linear regression was applied to estimate the adjusted means of the CBMN endpoints (micronuclei and nucleoplasmic bridges). Logistic regression analyses were used to estimate lung cancer risk and to control for potential confounding by age, gender, and smoking. Cases showed significantly higher levels of micronuclei and nucleoplasmic bridges as compared with controls (mean ± SEM = 3.54 ± 0.04 vs. 1.81 ± 0.04 and mean ± SEM = 4.26 ± 0.03 vs. 0.99 ± 0.03, respectively; P < 0.001) with no differences among participants with or without reported environmental exposure. No differences were observed when stratified by smoking or environmental exposure among cases or controls. A difference in lung cancer risk was observed between nonexposed male and female heavy smokers, although it was not statistically significant (I(2) = 64.9%; P value for Q statistic = 0.09). Our study confirms that the CBMN assay is an accurate predictor of lung cancer and supports the premise that heavy smoking may have an effect on DNA repair capacity and in turn modulate the risk of lung cancer. Identifying factors that increase lung cancer risk may lead to more effective prevention measures.
ISSN:1055-9965
1538-7755
DOI:10.1158/1055-9965.EPI-12-0435