Apolipoprotein E, not fibrillar β-amyloid, reduces cerebral glucose metabolism in normal aging

The ε4 allele of the polymorphic apolipoprotein E gene is associated with increased risk of Alzheimer's disease (AD), deposition of β-amyloid (Aβ), and reduction in cerebral glucose metabolism in asymptomatic people. Although ApoE4 may exert an effect on AD risk through amyloidogenic pathways,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2012-12, Vol.32 (50), p.18227-18233
Hauptverfasser: Jagust, William J, Landau, Susan M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ε4 allele of the polymorphic apolipoprotein E gene is associated with increased risk of Alzheimer's disease (AD), deposition of β-amyloid (Aβ), and reduction in cerebral glucose metabolism in asymptomatic people. Although ApoE4 may exert an effect on AD risk through amyloidogenic pathways, whether its effect on glucose metabolism is related to Aβ is unknown. To answer this question, we examined data from 175 cognitively normal older people (mean age, 77; 87 men, 88 women) in the Alzheimer's disease neuroimaging initiative studied concurrently with [(18)F]flurodeoxyglucose (FDG) positron emission tomography measures of glucose metabolism and the radiotracer [(18)F]florbetapir, an imaging agent which labels fibrillar Aβ in vivo. Based on a threshold value of florbetapir uptake determined in separate samples, subjects were categorized as florbetapir+ or florbetapir-. Glucose metabolism was measured as a continuous variable in a group of regions of interest (ROIs) selected a priori based on their involvement in AD, and also by using a whole-brain voxelwise approach. Among this sample, 29% of subjects were florbetapir+ and 23% were ApoE4 carriers. As expected, there was a significant association between ApoE4 genotype and florbetapir positivity. Florbetapir status, however, was not significantly associated with glucose metabolism, but the ApoE4 genotype was associated with lower metabolism in both voxelwise and ROI approaches. These results show that ApoE genotype, and not aggregated fibrillar forms of Aβ, contributes to reduced glucose metabolism in aging and adds to a growing list of neural consequences of ApoE that do not appear to be related to Aβ.
ISSN:0270-6474
1529-2401
1529-2401
DOI:10.1523/JNEUROSCI.3266-12.2012