Dedifferentiated fat cells differentiate into osteoblasts in titanium fiber mesh
Mature adipocyte-derived dedifferentiated fat (DFAT) cells rapidly differentiate into osteoblasts under three-dimensional culture conditions. However, it has not been demonstrated that DFAT cells can differentiate into osteoblasts in a rigid scaffold consisting of titanium fiber mesh (TFM). We exami...
Gespeichert in:
Veröffentlicht in: | Cytotechnology (Dordrecht) 2013-01, Vol.65 (1), p.15-22 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mature adipocyte-derived dedifferentiated fat (DFAT) cells rapidly differentiate into osteoblasts under three-dimensional culture conditions. However, it has not been demonstrated that DFAT cells can differentiate into osteoblasts in a rigid scaffold consisting of titanium fiber mesh (TFM). We examined the proliferation and osteogenic differentiation ability of DFAT cells using TFM as a scaffold. DFAT cells derived from rabbit subcutaneous fat were seeded into TFM and cultured in osteogenic medium containing dexamethasone,
l
-ascorbic acid 2-phosphate and β-glycerophosphate for 14 days. In scanning electron microscopy (SEM) analysis, well-spread cells covered the titanium fibers on day 3, and appeared to increase in number from day 3 to 7. Numerous globular accretions were found and almost completely covered the fibers on day 14. Cell proliferation, as measured by DNA content in the TFM, was significantly higher on day 7 compared with that of day 1. Osteocalcin and calcium content in the TFM were significantly higher on day 14 compared to those of days 1, 3, and 7, indicating DFAT cells differentiated into osteoblasts. We theorize that globular accretions observed in SEM analysis may be calcified matrix resulting from osteocalcin secreted by osteoblasts binding calcium contained in fetal bovine serum. In this study, we demonstrated that DFAT cells differentiate into osteoblasts and deposit mineralized matrices in TFM. Therefore, the combination of DFAT cells and TFM may be an attractive option for bone tissue engineering. |
---|---|
ISSN: | 0920-9069 1573-0778 |
DOI: | 10.1007/s10616-012-9456-z |