Intestinal colonization resistance

Summary Dense, complex microbial communities, collectively termed the microbiota, occupy a diverse array of niches along the length of the mammalian intestinal tract. During health and in the absence of antibiotic exposure the microbiota can effectively inhibit colonization and overgrowth by invadin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Immunology 2013-01, Vol.138 (1), p.1-11
Hauptverfasser: Lawley, Trevor D., Walker, Alan W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary Dense, complex microbial communities, collectively termed the microbiota, occupy a diverse array of niches along the length of the mammalian intestinal tract. During health and in the absence of antibiotic exposure the microbiota can effectively inhibit colonization and overgrowth by invading microbes such as pathogens. This phenomenon is called ‘colonization resistance’ and is associated with a stable and diverse microbiota in tandem with a controlled lack of inflammation, and involves specific interactions between the mucosal immune system and the microbiota. Here we overview the microbial ecology of the healthy mammalian intestinal tract and highlight the microbe–microbe and microbe–host interactions that promote colonization resistance. Emerging themes highlight immunological (T helper type 17/regulatory T‐cell balance), microbiota (diverse and abundant) and metabolic (short‐chain fatty acid) signatures of intestinal health and colonization resistance. Intestinal pathogens use specific virulence factors or exploit antibiotic use to subvert colonization resistance for their own benefit by triggering inflammation to disrupt the harmony of the intestinal ecosystem. A holistic view that incorporates immunological and microbiological facets of the intestinal ecosystem should facilitate the development of immunomodulatory and microbe‐modulatory therapies that promote intestinal homeostasis and colonization resistance.
ISSN:0019-2805
1365-2567
DOI:10.1111/j.1365-2567.2012.03616.x