A calcium channel mutant mouse model of hypokalemic periodic paralysis
Hypokalemic periodic paralysis (HypoPP) is a familial skeletal muscle disorder that presents with recurrent episodes of severe weakness lasting hours to days associated with reduced serum potassium (K+). HypoPP is genetically heterogeneous, with missense mutations of a calcium channel (Ca(V)1.1) or...
Gespeichert in:
Veröffentlicht in: | The Journal of clinical investigation 2012-12, Vol.122 (12), p.4580-4591 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hypokalemic periodic paralysis (HypoPP) is a familial skeletal muscle disorder that presents with recurrent episodes of severe weakness lasting hours to days associated with reduced serum potassium (K+). HypoPP is genetically heterogeneous, with missense mutations of a calcium channel (Ca(V)1.1) or a sodium channel (Na(V)1.4) accounting for 60% and 20% of cases, respectively. The mechanistic link between Ca(V)1.1 mutations and the ictal loss of muscle excitability during an attack of weakness in HypoPP is unknown. To address this question, we developed a mouse model for HypoPP with a targeted Ca(V)1.1 R528H mutation. The Ca(V)1.1 R528H mice had a HypoPP phenotype for which low K+ challenge produced a paradoxical depolarization of the resting potential, loss of muscle excitability, and weakness. A vacuolar myopathy with dilated transverse tubules and disruption of the triad junctions impaired Ca2+ release and likely contributed to the mild permanent weakness. Fibers from the Ca(V)1.1 R528H mouse had a small anomalous inward current at the resting potential, similar to our observations in the Na(V)1.4 R669H HypoPP mouse model. This "gating pore current" may be a common mechanism for paradoxical depolarization and susceptibility to HypoPP arising from missense mutations in the S4 voltage sensor of either calcium or sodium channels. |
---|---|
ISSN: | 0021-9738 1558-8238 |
DOI: | 10.1172/JCI66091 |