A calcium channel mutant mouse model of hypokalemic periodic paralysis

Hypokalemic periodic paralysis (HypoPP) is a familial skeletal muscle disorder that presents with recurrent episodes of severe weakness lasting hours to days associated with reduced serum potassium (K+). HypoPP is genetically heterogeneous, with missense mutations of a calcium channel (Ca(V)1.1) or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of clinical investigation 2012-12, Vol.122 (12), p.4580-4591
Hauptverfasser: Wu, Fenfen, Mi, Wentao, Hernández-Ochoa, Erick O, Burns, Dennis K, Fu, Yu, Gray, Hillery F, Struyk, Arie F, Schneider, Martin F, Cannon, Stephen C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hypokalemic periodic paralysis (HypoPP) is a familial skeletal muscle disorder that presents with recurrent episodes of severe weakness lasting hours to days associated with reduced serum potassium (K+). HypoPP is genetically heterogeneous, with missense mutations of a calcium channel (Ca(V)1.1) or a sodium channel (Na(V)1.4) accounting for 60% and 20% of cases, respectively. The mechanistic link between Ca(V)1.1 mutations and the ictal loss of muscle excitability during an attack of weakness in HypoPP is unknown. To address this question, we developed a mouse model for HypoPP with a targeted Ca(V)1.1 R528H mutation. The Ca(V)1.1 R528H mice had a HypoPP phenotype for which low K+ challenge produced a paradoxical depolarization of the resting potential, loss of muscle excitability, and weakness. A vacuolar myopathy with dilated transverse tubules and disruption of the triad junctions impaired Ca2+ release and likely contributed to the mild permanent weakness. Fibers from the Ca(V)1.1 R528H mouse had a small anomalous inward current at the resting potential, similar to our observations in the Na(V)1.4 R669H HypoPP mouse model. This "gating pore current" may be a common mechanism for paradoxical depolarization and susceptibility to HypoPP arising from missense mutations in the S4 voltage sensor of either calcium or sodium channels.
ISSN:0021-9738
1558-8238
DOI:10.1172/JCI66091