Phylogenetic analysis of uroporphyrinogen III synthase (UROS) gene

The uroporphyrinogen III synthase (UROS) enzyme (also known as hydroxymethylbilane hydrolyase) catalyzes the cyclization of hydroxymethylbilane to uroporphyrinogen III during heme biosynthesis. A deficiency of this enzyme is associated with the very rare Gunther's disease or congenital erythrop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformation 2012-01, Vol.8 (25), p.1265-1270
Hauptverfasser: Shaik, Abjal Pasha, Alsaeed, Abbas H, Sultana, Asma
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The uroporphyrinogen III synthase (UROS) enzyme (also known as hydroxymethylbilane hydrolyase) catalyzes the cyclization of hydroxymethylbilane to uroporphyrinogen III during heme biosynthesis. A deficiency of this enzyme is associated with the very rare Gunther's disease or congenital erythropoietic porphyria, an autosomal recessive inborn error of metabolism. The current study investigated the possible role of UROS (Homo sapiens [EC: 4.2.1.75; 265 aa; 1371 bp mRNA; Entrez Pubmed ref NP_000366.1, NM_000375.2]) in evolution by studying the phylogenetic relationship and divergence of this gene using computational methods. The UROS protein sequences from various taxa were retrieved from GenBank database and were compared using Clustal-W (multiple sequence alignment) with defaults and a first-pass phylogenetic tree was built using neighbor-joining method as in DELTA BLAST 2.2.27+ version. A total of 163 BLAST hits were found for the uroporphyrinogen III synthase query sequence and these hits showed putative conserved domain, HemD superfamily (as on 14(th) Nov 2012). We then narrowed down the search by manually deleting the proteins which were not UROS sequences and sequences belonging to phyla other than Chordata were deleted. A repeat phylogenetic analysis of 39 taxa was performed using PhyML and TreeDyn software to confirm that UROS is a highly conserved protein with approximately 85% conserved sequences in almost all chordate taxons emphasizing its importance in heme synthesis.
ISSN:0973-2063
0973-8894
0973-2063
DOI:10.6026/97320630081265