Correcting pervasive errors in RNA crystallography through enumerative structure prediction

A Rosetta algorithm improves RNA structure by scoring each nucleotide's possible conformations based on an energy function and electron-density data. Three-dimensional RNA models fitted into crystallographic density maps exhibit pervasive conformational ambiguities, geometric errors and steric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature methods 2013-01, Vol.10 (1), p.74-76
Hauptverfasser: Chou, Fang-Chieh, Sripakdeevong, Parin, Dibrov, Sergey M, Hermann, Thomas, Das, Rhiju
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A Rosetta algorithm improves RNA structure by scoring each nucleotide's possible conformations based on an energy function and electron-density data. Three-dimensional RNA models fitted into crystallographic density maps exhibit pervasive conformational ambiguities, geometric errors and steric clashes. To address these problems, we present enumerative real-space refinement assisted by electron density under Rosetta (ERRASER), coupled to Python-based hierarchical environment for integrated 'xtallography' (PHENIX) diffraction-based refinement. On 24 data sets, ERRASER automatically corrects the majority of MolProbity-assessed errors, improves the average R free factor, resolves functionally important discrepancies in noncanonical structure and refines low-resolution models to better match higher-resolution models.
ISSN:1548-7091
1548-7105
DOI:10.1038/nmeth.2262