Correcting pervasive errors in RNA crystallography through enumerative structure prediction
A Rosetta algorithm improves RNA structure by scoring each nucleotide's possible conformations based on an energy function and electron-density data. Three-dimensional RNA models fitted into crystallographic density maps exhibit pervasive conformational ambiguities, geometric errors and steric...
Gespeichert in:
Veröffentlicht in: | Nature methods 2013-01, Vol.10 (1), p.74-76 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A Rosetta algorithm improves RNA structure by scoring each nucleotide's possible conformations based on an energy function and electron-density data.
Three-dimensional RNA models fitted into crystallographic density maps exhibit pervasive conformational ambiguities, geometric errors and steric clashes. To address these problems, we present enumerative real-space refinement assisted by electron density under Rosetta (ERRASER), coupled to Python-based hierarchical environment for integrated 'xtallography' (PHENIX) diffraction-based refinement. On 24 data sets, ERRASER automatically corrects the majority of MolProbity-assessed errors, improves the average
R
free
factor, resolves functionally important discrepancies in noncanonical structure and refines low-resolution models to better match higher-resolution models. |
---|---|
ISSN: | 1548-7091 1548-7105 |
DOI: | 10.1038/nmeth.2262 |