β-Arrestin–biased agonism as the central mechanism of action for insulin-like growth factor 1 receptor–targeting antibodies in Ewing’s sarcoma
Owing to its essential role in cancer, insulin-like growth factor type 1 receptor (IGF-1R)–targeted therapy is an exciting approach for cancer treatment. However, when translated into clinical trials, IGF-1R–specific antibodies did not fulfill expectations. Despite promising clinical responses in Ew...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2012-12, Vol.109 (50), p.20620-20625 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Owing to its essential role in cancer, insulin-like growth factor type 1 receptor (IGF-1R)–targeted therapy is an exciting approach for cancer treatment. However, when translated into clinical trials, IGF-1R–specific antibodies did not fulfill expectations. Despite promising clinical responses in Ewing’s sarcoma (ES) phase I/II trials, phase III trials were discouraging, requiring bedside-to-bench translation and functional reevaluation of the drugs. The anti-IGF-1R antibody figitumumab (CP-751,871; CP) was designed as an antagonist to prevent ligand–receptor interaction but, as with all anti-IGF-1R antibodies, it induces agonist-like receptor down-regulation. We explored this paradox in a panel of ES cell lines and found their sensitivity to CP was unaffected by presence of IGF-1, countering a ligand blocking mechanism. CP induced IGF-1R/β-arrestin1 association with dual functional outcome: receptor ubiquitination and degradation and decrease in cell viability and β-arrestin1–dependent ERK signaling activation. Controlled β-arrestin1 suppression initially enhanced CP resistance. This effect was mitigated on further β-arrestin1 decrease, due to loss of CP-induced ERK activation. Confirming this, the ERK1/2 inhibitor U0126 increased sensitivity to CP. Combined, these results reveal the mechanism of CP-induced receptor down-regulation and characteristics that functionally qualify a prototypical antagonist as an IGF-1R–biased agonist: β-arrestin1 recruitment to IGF-1R as the underlying mechanism for ERK signaling activation and receptor down-regulation. We further confirmed the consequences of β-arrestin1 regulation on cell sensitivity to CP and demonstrated a therapeutic strategy to enhance response. Defining and suppressing such biased signaling represents a practical therapeutic strategy to enhance response to anti-IGF-1R therapies. |
---|---|
ISSN: | 0027-8424 1091-6490 1091-6490 |
DOI: | 10.1073/pnas.1216348110 |