Microsecond time-resolved energy-dispersive EXAFS measurement and its application to film the thermolysis of (NH4)2[PtCl6]

Microsecond (μs) time-resolved extended X-ray absorption fine structure spectroscopy (EXAFS) has been developed using an energy-dispersive EXAFS (EDE) setup equipped with a silicon Quantum Detector ULTRA. The feasibility was investigated with a prototypical thermally driven redox reaction, the therm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2012-12, Vol.2 (1), p.1018-1018, Article 1018
Hauptverfasser: Kong, Qingyu, Baudelet, Francois, Han, Jun, Chagnot, Sebastien, Barthe, Laurent, Headspith, Jon, Goldsbrough, Roger, Picca, Frederic E., Spalla, Olivier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microsecond (μs) time-resolved extended X-ray absorption fine structure spectroscopy (EXAFS) has been developed using an energy-dispersive EXAFS (EDE) setup equipped with a silicon Quantum Detector ULTRA. The feasibility was investigated with a prototypical thermally driven redox reaction, the thermal decomposition of (NH 4 ) 2 [PtCl 6 ]. EXAFS data were collected with snapshots every 60 μs during the course of the thermolysis reaction, then averaged for 100 times along the reaction to get better signal to noise ratio which reduces the time resolution to 6 millisecond (ms). Our results provide direct structural evidence of cis-PtCl 2 (NH 3 ) 2 as the intermediate, together with continuous electronic and geometric structure dynamics of the reactant, intermediate and final product during the course of the thermolysis of (NH 4 ) 2 [PtCl 6 ]. The thermal effect on EXAFS signals at high temperatures is considered in the data analysis, which is essential to follow the reaction process correctly. This method could also be applied to other reaction dynamics.
ISSN:2045-2322
2045-2322
DOI:10.1038/srep01018