Classification of glottic insufficiency and tension asymmetry using a multilayer perceptron

Objective: Laryngeal function can be evaluated from multiple perspectives, including aerodynamic input, acoustic output, and mucosal wave vibratory characteristics. To determine the classifying power of each of these, we used a multilayer perceptron artificial neural network (ANN) to classify data a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Laryngoscope 2012-12, Vol.122 (12), p.2773-2780
Hauptverfasser: Hoffman, Matthew R., Surender, Ketan, Devine, Erin E., Jiang, Jack J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Objective: Laryngeal function can be evaluated from multiple perspectives, including aerodynamic input, acoustic output, and mucosal wave vibratory characteristics. To determine the classifying power of each of these, we used a multilayer perceptron artificial neural network (ANN) to classify data as normal, glottic insufficiency, or tension asymmetry. Study design: Case series analyzing data obtained from excised larynges simulating different conditions. Methods: Aerodynamic, acoustic, and videokymographic data were collected from excised canine larynges simulating normal, glottic insufficiency, and tension asymmetry. Classification of samples was performed using a multilayer perceptron ANN. Results: A classification accuracy of 84% was achieved when including all parameters. Classification accuracy dropped below 75% when using only aerodynamic or acoustic parameters and below 65% when using only videokymographic parameters. Conclusions: Samples were classified with the greatest accuracy when using a wide range of parameters. Decreased classification accuracies for individual groups of parameters demonstrate the importance of a comprehensive voice assessment when evaluating dysphonia. Laryngoscope, 2012
ISSN:0023-852X
1531-4995
DOI:10.1002/lary.23549