Predicting protein residue―residue contacts using deep networks and boosting
Protein residue-residue contacts continue to play a larger and larger role in protein tertiary structure modeling and evaluation. Yet, while the importance of contact information increases, the performance of sequence-based contact predictors has improved slowly. New approaches and methods are neede...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2012-12, Vol.28 (23), p.3066-3072 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3072 |
---|---|
container_issue | 23 |
container_start_page | 3066 |
container_title | Bioinformatics |
container_volume | 28 |
creator | EICKHOLT, Jesse JIANLIN CHENG |
description | Protein residue-residue contacts continue to play a larger and larger role in protein tertiary structure modeling and evaluation. Yet, while the importance of contact information increases, the performance of sequence-based contact predictors has improved slowly. New approaches and methods are needed to spur further development and progress in the field.
Here we present DNCON, a new sequence-based residue-residue contact predictor using deep networks and boosting techniques. Making use of graphical processing units and CUDA parallel computing technology, we are able to train large boosted ensembles of residue-residue contact predictors achieving state-of-the-art performance.
The web server of the prediction method (DNCON) is available at http://iris.rnet.missouri.edu/dncon/.
chengji@missouri.edu
Supplementary data are available at Bioinformatics online. |
doi_str_mv | 10.1093/bioinformatics/bts598 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3509494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1221128257</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-158ec7290cf42ce93cd185c80ad420801dcf054f33f3b8975d3bdcdb638f72a23</originalsourceid><addsrcrecordid>eNqFkU1uFDEQhS0ESkLIEUC9QWIzSfm33RskFAWIFAELWFvush0MPfZgu0HZ5RK5ICdhRjMZyIpVPam-91SlR8hzCqcUBn42xhxTyGVpW8R6NrYqB_2IHFGu-oXQlD7ea-CH5Gmt3wBAglQH5JBxEL1U9Ih8-FS8i9hiuu5WJTcfU1d8jW72v2_vdqrDnJrFVru5bkDn_apLvv3K5XvtbHLdmHPdZDwjT4Kdqj_ZzWPy5e3F5_P3i6uP7y7P31wtUApoCyq1x54NgEEw9ANHR7VEDdYJBhqowwBSBM4DH_XQS8dHh25UXIeeWcaPyett7moel96hT63YyaxKXNpyY7KN5uEmxa_mOv80XMIgBrEOeLULKPnH7Gszy1jRT5NNPs_VUMEFUEWB_R9ljFKmmezXqNyiWHKtxYf9RRTMpjbzsDazrW3te_HvO3vXfU9r4OUOsBXtFIpNGOtfTimhtFb8D0TyqY4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1221128257</pqid></control><display><type>article</type><title>Predicting protein residue―residue contacts using deep networks and boosting</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>EICKHOLT, Jesse ; JIANLIN CHENG</creator><creatorcontrib>EICKHOLT, Jesse ; JIANLIN CHENG</creatorcontrib><description>Protein residue-residue contacts continue to play a larger and larger role in protein tertiary structure modeling and evaluation. Yet, while the importance of contact information increases, the performance of sequence-based contact predictors has improved slowly. New approaches and methods are needed to spur further development and progress in the field.
Here we present DNCON, a new sequence-based residue-residue contact predictor using deep networks and boosting techniques. Making use of graphical processing units and CUDA parallel computing technology, we are able to train large boosted ensembles of residue-residue contact predictors achieving state-of-the-art performance.
The web server of the prediction method (DNCON) is available at http://iris.rnet.missouri.edu/dncon/.
chengji@missouri.edu
Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>EISSN: 1460-2059</identifier><identifier>DOI: 10.1093/bioinformatics/bts598</identifier><identifier>PMID: 23047561</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Artificial Intelligence ; Biological and medical sciences ; Computational Biology - methods ; Fundamental and applied biological sciences. Psychology ; General aspects ; Internet ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Models, Statistical ; Original Papers ; Protein Structure, Tertiary ; Proteins - chemistry</subject><ispartof>Bioinformatics, 2012-12, Vol.28 (23), p.3066-3072</ispartof><rights>2014 INIST-CNRS</rights><rights>The Author 2012. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-158ec7290cf42ce93cd185c80ad420801dcf054f33f3b8975d3bdcdb638f72a23</citedby><cites>FETCH-LOGICAL-c540t-158ec7290cf42ce93cd185c80ad420801dcf054f33f3b8975d3bdcdb638f72a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3509494/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3509494/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26646886$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23047561$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>EICKHOLT, Jesse</creatorcontrib><creatorcontrib>JIANLIN CHENG</creatorcontrib><title>Predicting protein residue―residue contacts using deep networks and boosting</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Protein residue-residue contacts continue to play a larger and larger role in protein tertiary structure modeling and evaluation. Yet, while the importance of contact information increases, the performance of sequence-based contact predictors has improved slowly. New approaches and methods are needed to spur further development and progress in the field.
Here we present DNCON, a new sequence-based residue-residue contact predictor using deep networks and boosting techniques. Making use of graphical processing units and CUDA parallel computing technology, we are able to train large boosted ensembles of residue-residue contact predictors achieving state-of-the-art performance.
The web server of the prediction method (DNCON) is available at http://iris.rnet.missouri.edu/dncon/.
chengji@missouri.edu
Supplementary data are available at Bioinformatics online.</description><subject>Artificial Intelligence</subject><subject>Biological and medical sciences</subject><subject>Computational Biology - methods</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Internet</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Models, Statistical</subject><subject>Original Papers</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins - chemistry</subject><issn>1367-4803</issn><issn>1367-4811</issn><issn>1460-2059</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1uFDEQhS0ESkLIEUC9QWIzSfm33RskFAWIFAELWFvush0MPfZgu0HZ5RK5ICdhRjMZyIpVPam-91SlR8hzCqcUBn42xhxTyGVpW8R6NrYqB_2IHFGu-oXQlD7ea-CH5Gmt3wBAglQH5JBxEL1U9Ih8-FS8i9hiuu5WJTcfU1d8jW72v2_vdqrDnJrFVru5bkDn_apLvv3K5XvtbHLdmHPdZDwjT4Kdqj_ZzWPy5e3F5_P3i6uP7y7P31wtUApoCyq1x54NgEEw9ANHR7VEDdYJBhqowwBSBM4DH_XQS8dHh25UXIeeWcaPyett7moel96hT63YyaxKXNpyY7KN5uEmxa_mOv80XMIgBrEOeLULKPnH7Gszy1jRT5NNPs_VUMEFUEWB_R9ljFKmmezXqNyiWHKtxYf9RRTMpjbzsDazrW3te_HvO3vXfU9r4OUOsBXtFIpNGOtfTimhtFb8D0TyqY4</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>EICKHOLT, Jesse</creator><creator>JIANLIN CHENG</creator><general>Oxford University Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20121201</creationdate><title>Predicting protein residue―residue contacts using deep networks and boosting</title><author>EICKHOLT, Jesse ; JIANLIN CHENG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-158ec7290cf42ce93cd185c80ad420801dcf054f33f3b8975d3bdcdb638f72a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Artificial Intelligence</topic><topic>Biological and medical sciences</topic><topic>Computational Biology - methods</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Internet</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Models, Statistical</topic><topic>Original Papers</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>EICKHOLT, Jesse</creatorcontrib><creatorcontrib>JIANLIN CHENG</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>EICKHOLT, Jesse</au><au>JIANLIN CHENG</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting protein residue―residue contacts using deep networks and boosting</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2012-12-01</date><risdate>2012</risdate><volume>28</volume><issue>23</issue><spage>3066</spage><epage>3072</epage><pages>3066-3072</pages><issn>1367-4803</issn><eissn>1367-4811</eissn><eissn>1460-2059</eissn><abstract>Protein residue-residue contacts continue to play a larger and larger role in protein tertiary structure modeling and evaluation. Yet, while the importance of contact information increases, the performance of sequence-based contact predictors has improved slowly. New approaches and methods are needed to spur further development and progress in the field.
Here we present DNCON, a new sequence-based residue-residue contact predictor using deep networks and boosting techniques. Making use of graphical processing units and CUDA parallel computing technology, we are able to train large boosted ensembles of residue-residue contact predictors achieving state-of-the-art performance.
The web server of the prediction method (DNCON) is available at http://iris.rnet.missouri.edu/dncon/.
chengji@missouri.edu
Supplementary data are available at Bioinformatics online.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>23047561</pmid><doi>10.1093/bioinformatics/bts598</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics, 2012-12, Vol.28 (23), p.3066-3072 |
issn | 1367-4803 1367-4811 1460-2059 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3509494 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford Journals Open Access Collection; PubMed Central; Alma/SFX Local Collection |
subjects | Artificial Intelligence Biological and medical sciences Computational Biology - methods Fundamental and applied biological sciences. Psychology General aspects Internet Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) Models, Statistical Original Papers Protein Structure, Tertiary Proteins - chemistry |
title | Predicting protein residue―residue contacts using deep networks and boosting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A46%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20protein%20residue%E2%80%95residue%20contacts%20using%20deep%20networks%20and%20boosting&rft.jtitle=Bioinformatics&rft.au=EICKHOLT,%20Jesse&rft.date=2012-12-01&rft.volume=28&rft.issue=23&rft.spage=3066&rft.epage=3072&rft.pages=3066-3072&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/bts598&rft_dat=%3Cproquest_pubme%3E1221128257%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1221128257&rft_id=info:pmid/23047561&rfr_iscdi=true |