Predicting protein residue―residue contacts using deep networks and boosting

Protein residue-residue contacts continue to play a larger and larger role in protein tertiary structure modeling and evaluation. Yet, while the importance of contact information increases, the performance of sequence-based contact predictors has improved slowly. New approaches and methods are neede...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2012-12, Vol.28 (23), p.3066-3072
Hauptverfasser: EICKHOLT, Jesse, JIANLIN CHENG
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3072
container_issue 23
container_start_page 3066
container_title Bioinformatics
container_volume 28
creator EICKHOLT, Jesse
JIANLIN CHENG
description Protein residue-residue contacts continue to play a larger and larger role in protein tertiary structure modeling and evaluation. Yet, while the importance of contact information increases, the performance of sequence-based contact predictors has improved slowly. New approaches and methods are needed to spur further development and progress in the field. Here we present DNCON, a new sequence-based residue-residue contact predictor using deep networks and boosting techniques. Making use of graphical processing units and CUDA parallel computing technology, we are able to train large boosted ensembles of residue-residue contact predictors achieving state-of-the-art performance. The web server of the prediction method (DNCON) is available at http://iris.rnet.missouri.edu/dncon/. chengji@missouri.edu Supplementary data are available at Bioinformatics online.
doi_str_mv 10.1093/bioinformatics/bts598
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3509494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1221128257</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-158ec7290cf42ce93cd185c80ad420801dcf054f33f3b8975d3bdcdb638f72a23</originalsourceid><addsrcrecordid>eNqFkU1uFDEQhS0ESkLIEUC9QWIzSfm33RskFAWIFAELWFvush0MPfZgu0HZ5RK5ICdhRjMZyIpVPam-91SlR8hzCqcUBn42xhxTyGVpW8R6NrYqB_2IHFGu-oXQlD7ea-CH5Gmt3wBAglQH5JBxEL1U9Ih8-FS8i9hiuu5WJTcfU1d8jW72v2_vdqrDnJrFVru5bkDn_apLvv3K5XvtbHLdmHPdZDwjT4Kdqj_ZzWPy5e3F5_P3i6uP7y7P31wtUApoCyq1x54NgEEw9ANHR7VEDdYJBhqowwBSBM4DH_XQS8dHh25UXIeeWcaPyett7moel96hT63YyaxKXNpyY7KN5uEmxa_mOv80XMIgBrEOeLULKPnH7Gszy1jRT5NNPs_VUMEFUEWB_R9ljFKmmezXqNyiWHKtxYf9RRTMpjbzsDazrW3te_HvO3vXfU9r4OUOsBXtFIpNGOtfTimhtFb8D0TyqY4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1221128257</pqid></control><display><type>article</type><title>Predicting protein residue―residue contacts using deep networks and boosting</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>EICKHOLT, Jesse ; JIANLIN CHENG</creator><creatorcontrib>EICKHOLT, Jesse ; JIANLIN CHENG</creatorcontrib><description>Protein residue-residue contacts continue to play a larger and larger role in protein tertiary structure modeling and evaluation. Yet, while the importance of contact information increases, the performance of sequence-based contact predictors has improved slowly. New approaches and methods are needed to spur further development and progress in the field. Here we present DNCON, a new sequence-based residue-residue contact predictor using deep networks and boosting techniques. Making use of graphical processing units and CUDA parallel computing technology, we are able to train large boosted ensembles of residue-residue contact predictors achieving state-of-the-art performance. The web server of the prediction method (DNCON) is available at http://iris.rnet.missouri.edu/dncon/. chengji@missouri.edu Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>EISSN: 1460-2059</identifier><identifier>DOI: 10.1093/bioinformatics/bts598</identifier><identifier>PMID: 23047561</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Artificial Intelligence ; Biological and medical sciences ; Computational Biology - methods ; Fundamental and applied biological sciences. Psychology ; General aspects ; Internet ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Models, Statistical ; Original Papers ; Protein Structure, Tertiary ; Proteins - chemistry</subject><ispartof>Bioinformatics, 2012-12, Vol.28 (23), p.3066-3072</ispartof><rights>2014 INIST-CNRS</rights><rights>The Author 2012. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-158ec7290cf42ce93cd185c80ad420801dcf054f33f3b8975d3bdcdb638f72a23</citedby><cites>FETCH-LOGICAL-c540t-158ec7290cf42ce93cd185c80ad420801dcf054f33f3b8975d3bdcdb638f72a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3509494/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3509494/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26646886$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23047561$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>EICKHOLT, Jesse</creatorcontrib><creatorcontrib>JIANLIN CHENG</creatorcontrib><title>Predicting protein residue―residue contacts using deep networks and boosting</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Protein residue-residue contacts continue to play a larger and larger role in protein tertiary structure modeling and evaluation. Yet, while the importance of contact information increases, the performance of sequence-based contact predictors has improved slowly. New approaches and methods are needed to spur further development and progress in the field. Here we present DNCON, a new sequence-based residue-residue contact predictor using deep networks and boosting techniques. Making use of graphical processing units and CUDA parallel computing technology, we are able to train large boosted ensembles of residue-residue contact predictors achieving state-of-the-art performance. The web server of the prediction method (DNCON) is available at http://iris.rnet.missouri.edu/dncon/. chengji@missouri.edu Supplementary data are available at Bioinformatics online.</description><subject>Artificial Intelligence</subject><subject>Biological and medical sciences</subject><subject>Computational Biology - methods</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Internet</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Models, Statistical</subject><subject>Original Papers</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins - chemistry</subject><issn>1367-4803</issn><issn>1367-4811</issn><issn>1460-2059</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1uFDEQhS0ESkLIEUC9QWIzSfm33RskFAWIFAELWFvush0MPfZgu0HZ5RK5ICdhRjMZyIpVPam-91SlR8hzCqcUBn42xhxTyGVpW8R6NrYqB_2IHFGu-oXQlD7ea-CH5Gmt3wBAglQH5JBxEL1U9Ih8-FS8i9hiuu5WJTcfU1d8jW72v2_vdqrDnJrFVru5bkDn_apLvv3K5XvtbHLdmHPdZDwjT4Kdqj_ZzWPy5e3F5_P3i6uP7y7P31wtUApoCyq1x54NgEEw9ANHR7VEDdYJBhqowwBSBM4DH_XQS8dHh25UXIeeWcaPyett7moel96hT63YyaxKXNpyY7KN5uEmxa_mOv80XMIgBrEOeLULKPnH7Gszy1jRT5NNPs_VUMEFUEWB_R9ljFKmmezXqNyiWHKtxYf9RRTMpjbzsDazrW3te_HvO3vXfU9r4OUOsBXtFIpNGOtfTimhtFb8D0TyqY4</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>EICKHOLT, Jesse</creator><creator>JIANLIN CHENG</creator><general>Oxford University Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20121201</creationdate><title>Predicting protein residue―residue contacts using deep networks and boosting</title><author>EICKHOLT, Jesse ; JIANLIN CHENG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-158ec7290cf42ce93cd185c80ad420801dcf054f33f3b8975d3bdcdb638f72a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Artificial Intelligence</topic><topic>Biological and medical sciences</topic><topic>Computational Biology - methods</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Internet</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Models, Statistical</topic><topic>Original Papers</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>EICKHOLT, Jesse</creatorcontrib><creatorcontrib>JIANLIN CHENG</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>EICKHOLT, Jesse</au><au>JIANLIN CHENG</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting protein residue―residue contacts using deep networks and boosting</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2012-12-01</date><risdate>2012</risdate><volume>28</volume><issue>23</issue><spage>3066</spage><epage>3072</epage><pages>3066-3072</pages><issn>1367-4803</issn><eissn>1367-4811</eissn><eissn>1460-2059</eissn><abstract>Protein residue-residue contacts continue to play a larger and larger role in protein tertiary structure modeling and evaluation. Yet, while the importance of contact information increases, the performance of sequence-based contact predictors has improved slowly. New approaches and methods are needed to spur further development and progress in the field. Here we present DNCON, a new sequence-based residue-residue contact predictor using deep networks and boosting techniques. Making use of graphical processing units and CUDA parallel computing technology, we are able to train large boosted ensembles of residue-residue contact predictors achieving state-of-the-art performance. The web server of the prediction method (DNCON) is available at http://iris.rnet.missouri.edu/dncon/. chengji@missouri.edu Supplementary data are available at Bioinformatics online.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>23047561</pmid><doi>10.1093/bioinformatics/bts598</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2012-12, Vol.28 (23), p.3066-3072
issn 1367-4803
1367-4811
1460-2059
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3509494
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford Journals Open Access Collection; PubMed Central; Alma/SFX Local Collection
subjects Artificial Intelligence
Biological and medical sciences
Computational Biology - methods
Fundamental and applied biological sciences. Psychology
General aspects
Internet
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Models, Statistical
Original Papers
Protein Structure, Tertiary
Proteins - chemistry
title Predicting protein residue―residue contacts using deep networks and boosting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A46%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20protein%20residue%E2%80%95residue%20contacts%20using%20deep%20networks%20and%20boosting&rft.jtitle=Bioinformatics&rft.au=EICKHOLT,%20Jesse&rft.date=2012-12-01&rft.volume=28&rft.issue=23&rft.spage=3066&rft.epage=3072&rft.pages=3066-3072&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/bts598&rft_dat=%3Cproquest_pubme%3E1221128257%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1221128257&rft_id=info:pmid/23047561&rfr_iscdi=true