Predicting protein residue―residue contacts using deep networks and boosting

Protein residue-residue contacts continue to play a larger and larger role in protein tertiary structure modeling and evaluation. Yet, while the importance of contact information increases, the performance of sequence-based contact predictors has improved slowly. New approaches and methods are neede...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2012-12, Vol.28 (23), p.3066-3072
Hauptverfasser: EICKHOLT, Jesse, JIANLIN CHENG
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Protein residue-residue contacts continue to play a larger and larger role in protein tertiary structure modeling and evaluation. Yet, while the importance of contact information increases, the performance of sequence-based contact predictors has improved slowly. New approaches and methods are needed to spur further development and progress in the field. Here we present DNCON, a new sequence-based residue-residue contact predictor using deep networks and boosting techniques. Making use of graphical processing units and CUDA parallel computing technology, we are able to train large boosted ensembles of residue-residue contact predictors achieving state-of-the-art performance. The web server of the prediction method (DNCON) is available at http://iris.rnet.missouri.edu/dncon/. chengji@missouri.edu Supplementary data are available at Bioinformatics online.
ISSN:1367-4803
1367-4811
1460-2059
DOI:10.1093/bioinformatics/bts598