Predicting protein residue―residue contacts using deep networks and boosting
Protein residue-residue contacts continue to play a larger and larger role in protein tertiary structure modeling and evaluation. Yet, while the importance of contact information increases, the performance of sequence-based contact predictors has improved slowly. New approaches and methods are neede...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2012-12, Vol.28 (23), p.3066-3072 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Protein residue-residue contacts continue to play a larger and larger role in protein tertiary structure modeling and evaluation. Yet, while the importance of contact information increases, the performance of sequence-based contact predictors has improved slowly. New approaches and methods are needed to spur further development and progress in the field.
Here we present DNCON, a new sequence-based residue-residue contact predictor using deep networks and boosting techniques. Making use of graphical processing units and CUDA parallel computing technology, we are able to train large boosted ensembles of residue-residue contact predictors achieving state-of-the-art performance.
The web server of the prediction method (DNCON) is available at http://iris.rnet.missouri.edu/dncon/.
chengji@missouri.edu
Supplementary data are available at Bioinformatics online. |
---|---|
ISSN: | 1367-4803 1367-4811 1460-2059 |
DOI: | 10.1093/bioinformatics/bts598 |