HiCNorm: removing biases in Hi-C data via Poisson regression

We propose a parametric model, HiCNorm, to remove systematic biases in the raw Hi-C contact maps, resulting in a simple, fast, yet accurate normalization procedure. Compared with the existing Hi-C normalization method developed by Yaffe and Tanay, HiCNorm has fewer parameters, runs >1000 times fa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2012-12, Vol.28 (23), p.3131-3133
Hauptverfasser: MING HU, KE DENG, SELVARAJ, Siddarth, ZHAOHUI QIN, BING REN, LIU, Jun S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a parametric model, HiCNorm, to remove systematic biases in the raw Hi-C contact maps, resulting in a simple, fast, yet accurate normalization procedure. Compared with the existing Hi-C normalization method developed by Yaffe and Tanay, HiCNorm has fewer parameters, runs >1000 times faster and achieves higher reproducibility. Freely available on the web at: http://www.people.fas.harvard.edu/∼junliu/HiCNorm/. jliu@stat.harvard.edu Supplementary data are available at Bioinformatics online.
ISSN:1367-4803
1367-4811
1460-2059
DOI:10.1093/bioinformatics/bts570