Phylogenetic analysis of AGAMOUS sequences reveals the origin of the diploid and tetraploid forms of self-pollinating wild buckwheat, Fagopyrum homotropicum Ohnishi

Fagopyrum homotropicum Ohnishi is a self-pollinating wild buckwheat species indigenous to eastern Tibet and the Yunnan and Sichuan Provinces of China. It is useful breeding material for shifting cultivated buckwheat (F. esculentum ssp. esculentum Moench) from out-crossing to self-pollinating. Despit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Breeding Science 2012, Vol.62(3), pp.241-247
Hauptverfasser: Tomiyoshi, Mitsuyuki, Yasui, Yasuo, Ohsako, Takanori, Li, Cheng-Yun, Ohnishi, Ohmi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fagopyrum homotropicum Ohnishi is a self-pollinating wild buckwheat species indigenous to eastern Tibet and the Yunnan and Sichuan Provinces of China. It is useful breeding material for shifting cultivated buckwheat (F. esculentum ssp. esculentum Moench) from out-crossing to self-pollinating. Despite its importance as a genetic resource in buckwheat breeding, the genetic variation of F. homotropicum is poorly understood. In this study, we investigated the genetic variation and phylogenetic relationships of the diploid and tetraploid forms of F. homotropicum based on the nucleotide sequences of a nuclear gene, AGAMOUS (AG). Neighbor-joining analysis revealed that representative individuals clustered into three large groups (Group I, II and III). Each group contained diploid and tetraploid forms of F. homotropicum. We identified tetraploid plants that had two diverged AG sequences; one belonging to Group I and the other belonging to Group II, or one belonging to Group II and the other belonging to Group III. These results suggest that the tetraploid form originated from at least two hybridization events between deeply differentiated diploids. The results also imply that the genetic diversity contributed by tetraploidization of differentiated diploids may have allowed the distribution range of F. homotropicum to expand to the northern areas of China.
ISSN:1344-7610
1347-3735
DOI:10.1270/jsbbs.62.241