Neuroprotective effects of phenolic antioxidant tBHQ associate with inhibition of FoxO3a nuclear translocation and activity

The Forkhead transcription factor, FoxO3a induces genomic death responses in neurones following translocation from the cytosol to the nucleus. Nuclear translocation of FoxO3a is triggered by trophic factor withdrawal, oxidative stress and the stimulation of extrasynaptic NMDA receptors. Receptor act...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neurochemistry 2012-10, Vol.123 (1), p.182-191
Hauptverfasser: Bahia, Parmvir K., Pugh, Victoria, Hoyland, Kimberley, Hensley, Victoria, Rattray, Marcus, Williams, Robert J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Forkhead transcription factor, FoxO3a induces genomic death responses in neurones following translocation from the cytosol to the nucleus. Nuclear translocation of FoxO3a is triggered by trophic factor withdrawal, oxidative stress and the stimulation of extrasynaptic NMDA receptors. Receptor activation of phosphatidylinositol 3‐kinase (PI3K)–Akt signalling pathways retains FoxO3a in the cytoplasm, thereby inhibiting the transcriptional activation of death‐promoting genes. We hypothesized that phenolic antioxidants such as tert‐Butylhydroquinone (tBHQ), which is known to stimulate PI3K–Akt signalling, would inhibit FoxO3a translocation and activity. Treatment of cultured cortical neurones with NMDA increased the nuclear localization of FoxO3a, reduced the phosphorylation of FoxO3a, increased caspase activity and up‐regulated Fas ligand expression. In contrast the phenolic antioxidant, tBHQ, caused retention of FoxO3a in the cytosol coincident with enhanced PI3K‐ dependent phosphorylation of FoxO3a. tBHQ‐induced nuclear exclusion of FoxO3a was associated with reduced FoxO‐mediated transcriptional activity. Exposure of neurones to tBHQ inhibited NMDA‐induced nuclear translocation of FoxO3a, prevented NMDA‐induced up‐regulation of FoxO‐mediated transcriptional activity, blocked caspase activation and protected neurones from NMDA‐induced excitotoxic death. Collectively, these data suggest that phenolic antioxidants such as tBHQ oppose stress‐induced activation of FoxO3a and therefore have potential neuroprotective utility in neurodegeneration. Neuroprotective potential of the dietary phenolic antioxidant tBHQ through inhibition of FoxO3aWe wished to test whether phenolic antioxidants such as the FDA‐approved food preservative tBHQ could oppose activation of FoxO3a‐induced death responses in cortical and motor neurones. tBHQ inhibited NMDA‐induced nuclear translocation of FoxO3a, prevented NMDA‐induced up‐regulation of FoxO‐mediated transcriptional activity, blocked caspase‐3 activation and protected neurones from excitotoxicity. Collectively, this supports the concept that tBHQ and structurally similar antioxidants have potential neuroprotective utility in neurodegeneration, particularly in those conditions linking FoxO activation to oxidative stress and excitotoxic neuronal cell death.
ISSN:0022-3042
1471-4159
1471-4159
DOI:10.1111/j.1471-4159.2012.07877.x