Models of assembly and disassembly of individual microtubules: stochastic and averaged equations
In this paper we present solutions of the master equations for the microtubule length and show that the local probability for rescues or catastrophes can lead to bell-shaped length histograms. Conversely, as already known, non-local probabilities for these events result in exponential length histogr...
Gespeichert in:
Veröffentlicht in: | Journal of biological physics 1999-03, Vol.25 (1), p.1-22 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we present solutions of the master equations for the microtubule length and show that the local probability for rescues or catastrophes can lead to bell-shaped length histograms. Conversely, as already known, non-local probabilities for these events result in exponential length histograms. We also derive master equations for a stabilizing cap and obtain a new boundary condition which provides an explanation of the results obtained in dilution and cutting experiments. |
---|---|
ISSN: | 0092-0606 1573-0689 |
DOI: | 10.1023/A:1005159215657 |