Digital radiography and film scanners: automating the transition to filmless radiology

To facilitate the integration of digital radiography (DR) and legacy film/screen technology, we have devised a methodology for film digitization that optimizes workflow and integrates well with the picture archiving and communication system (PACS). This work was performed at Mercy Medical Center (Ce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of digital imaging 2001-06, Vol.14 (2 Suppl 1), p.128-130
Hauptverfasser: Dzingle, D, May, G A, Garland, H T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To facilitate the integration of digital radiography (DR) and legacy film/screen technology, we have devised a methodology for film digitization that optimizes workflow and integrates well with the picture archiving and communication system (PACS). This work was performed at Mercy Medical Center (Cedar Rapids, IA) using a film digitizer with built-in Digital Imaging and Communications in Medicine (DICOM) communication. The radiology department at Mercy has one DR system and three separate film/screen systems. The DR system software suite features DICOM Modality Worklist capability to provide complete radiology information system (RIS) integration functionality. This provides for patient demographic information to be automatically downloaded from the RIS worklist to populate the DICOM image header. Likewise, we have taken advantage of the film scanner's DICOM capability to develop software linking it with the hospital RIS. This capability provides a worklist downloading functionality equivalent to that of the DR. Patient demographics can then be rapidly downloaded as each film is digitized. The worklist capability of the scanner is essential in several respects. First, it guarantees that patient demographic information is completely accurate and, therefore, that the digitized x-ray image will be merged with the correct patient file in the PACS. Additionally, high film scanner throughput is achieved, guaranteeing that all inpatient-digitized films are as readily available on the PACS as their DR image counterparts. The digitized images have proven to be of diagnostic quality on the typical 1K by 1K PACS workstation. Also, as patients are admitted to the hospital, prior films from the radiology archive are digitized to form a readily available patient history for in-house physicians. Over time, we are building archival patient histories of soft-copy images that will enable increased availability of patient x-rays to both in-hospital and outside referring physicians, especially as more internet-viewing software becomes available to the out-of-hospital medical community. Finally, the results of this study show that high-throughput RIS integration of film scanning equipment is a key component to making a graceful transition to the filmless hospital as more DR systems are installed.
ISSN:0897-1889
1618-727X
DOI:10.1007/BF03190315