Nucleotides enhance the secretion of interleukin 7 from primary-cultured murine intestinal epithelial cells
Our previous studies showed that dietary nucleotides fed to mice enhanced the secretion of interleukin 7 (IL-7) and transforming growth factor beta (TGF-beta) from intestinal epithelial cells (IECs). To explore whether nucleotides influence IECs directly to enhance the secretion of the cytokines or...
Gespeichert in:
Veröffentlicht in: | Cytotechnology (Dordrecht) 2002-11, Vol.40 (1-3), p.59-65 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Our previous studies showed that dietary nucleotides fed to mice enhanced the secretion of interleukin 7 (IL-7) and transforming growth factor beta (TGF-beta) from intestinal epithelial cells (IECs). To explore whether nucleotides influence IECs directly to enhance the secretion of the cytokines or not, the effects of nucleotides added in vitro on the cytokine secretion from primary-cultured murine IECs were examined. When the mixture of nucleotide 5'-monophosphates (CMP, GMP, IMP, and UMP) or individual nucleotide 5'-monophosphates were added to the primary culture of IECs derived from BALB/c mice, the secretion of IL-7, but not that of TGF-beta, was increased significantly. Addition of nucleotides to the culture did not alter the number of the IECs. Secretion of IL-6 and granulocyte-macrophage colony-stimulating factor, which are known to be secreted from IECs, was not enhanced by the addition of nucleotides. These results demonstrate that nucleotides can affect IECs directly to enhance the secretion of IL-7, and suggest that the increased secretion of TGF-beta from IECs by dietary nucleotides was due to indirect effects of the nucleotides, which may affect intestinal microflora or cells other than IECs that in turn influence the cytokine secretion of IECs. |
---|---|
ISSN: | 0920-9069 1573-0778 |
DOI: | 10.1023/A:1023914105151 |