Down-regulation of NR3A-containing NMDARs is required for synapse maturation and memory consolidation
NR3A is the only NMDA receptor (NMDAR) subunit that down-regulates sharply prior to the onset of sensitive periods for plasticity, yet the functional importance of this transient expression remains largely unknown. To investigate the possibility that removal/replacement of juvenile NR3A-containing N...
Gespeichert in:
Veröffentlicht in: | Neuron (Cambridge, Mass.) Mass.), 2009-08, Vol.63 (3), p.342-356 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | NR3A is the only NMDA receptor (NMDAR) subunit that down-regulates sharply prior to the onset of sensitive periods for plasticity, yet the functional importance of this transient expression remains largely unknown. To investigate the possibility that removal/replacement of juvenile NR3A-containing NMDARs is involved in experience-driven synapse maturation, we used a reversible transgenic system that allowed persistent NR3A expression in the postnatal forebrain. We found that removal of NR3A is required to develop strong NMDAR currents, full expression of long-term synaptic plasticity, a mature synaptic organization characterized by more synapses and larger postsynaptic densities, and the ability to form long-term memories. Deficits associated with prolonged NR3A were reversible, as late-onset suppression of transgene expression rescued both the synaptic and memory impairments. Our results suggest that NR3A behaves as a molecular brake to prevent the premature strengthening and stabilization of excitatory synapses, and that NR3A removal might thereby initiate critical stages of synapse maturation during early postnatal neural development. |
---|---|
ISSN: | 0896-6273 1097-4199 |
DOI: | 10.1016/j.neuron.2009.06.016 |