Plasma-assisted atomic layer deposition of Al2O3 and parylene C bi-layer encapsulation for chronic implantable electronics
Encapsulation of biomedical implants with complex three dimensional geometries is one of the greatest challenges achieving long-term functionality and stability. This report presents an encapsulation scheme that combines Al2O3 by atomic layer deposition with parylene C for implantable electronic sys...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2012-08, Vol.101 (9) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 101 |
creator | Xie, Xianzong Rieth, Loren Merugu, Srinivas Tathireddy, Prashant Solzbacher, Florian |
description | Encapsulation of biomedical implants with complex three dimensional geometries is one of the greatest challenges achieving long-term functionality and stability. This report presents an encapsulation scheme that combines Al2O3 by atomic layer deposition with parylene C for implantable electronic systems. The Al2O3-parylene C bi-layer was used to encapsulate interdigitated electrodes, which were tested invitro by soak testing in phosphate buffered saline solution at body temperature (37 degree C) and elevated temperatures (57 degree C and 67 degree C) for accelerated lifetime testing up to 5 months. Leakage current and electrochemical impedance spectroscopy were measured for evaluating the integrity and insulation performance of the coating. Leakage current was stably about 15 pA at 5 V dc, and impedance was constantly about 3.5 M[ohm at 1 kHz by using electrochemical impedance spectroscopy for samples under 67 degree C about 5 months (approximately equivalent to 40 months at 37 degree C). Alumina and parylene coating lasted at least 3 times longer than parylene coated samples tested at 80 degree C. The excellent insulation performance of the encapsulation shows its potential usefulness for chronic implants. |
doi_str_mv | 10.1063/1.4748322 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3443113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1323214853</sourcerecordid><originalsourceid>FETCH-LOGICAL-p208t-7e17bd02e33f011b71b3ffe55ed7bc24a8fa48cd1cec3fa8c60f3e25bb895bb63</originalsourceid><addsrcrecordid>eNpVj81OwzAQhC0EolA48AY-ckmxvUmTXpCqij-pUjnAOVo7a2rkxCFOkMrTE7U9wGVnd2f0ScPYjRQzKeZwJ2dpnhag1Am7EEJAMl9k8vTPPmGXMX6OZ6YAztlEgVAp5PkF-3n1GGtMMEYXe6o49qF2hnvcUccrakN0vQsND5YvvdoAx6biLXY7Tw3xFdcuOWSpMdjGweM-bkPHzbYLzchydeux6VF74uTJ9Pt3vGJnFn2k66NO2fvjw9vqOVlvnl5Wy3XSKlH0SU4y15VQBGCFlDqXGqylLKMq10alWFhMC1NJQwYsFmYuLJDKtC4W45jDlN0fuO2ga6oMNX2Hvmw7V481yoCu_O80blt-hO8S0hSkhBFwewR04Wug2Je1i4b8WIrCEEsJCpRMiwzgF6u0e1Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1323214853</pqid></control><display><type>article</type><title>Plasma-assisted atomic layer deposition of Al2O3 and parylene C bi-layer encapsulation for chronic implantable electronics</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Xie, Xianzong ; Rieth, Loren ; Merugu, Srinivas ; Tathireddy, Prashant ; Solzbacher, Florian</creator><creatorcontrib>Xie, Xianzong ; Rieth, Loren ; Merugu, Srinivas ; Tathireddy, Prashant ; Solzbacher, Florian</creatorcontrib><description>Encapsulation of biomedical implants with complex three dimensional geometries is one of the greatest challenges achieving long-term functionality and stability. This report presents an encapsulation scheme that combines Al2O3 by atomic layer deposition with parylene C for implantable electronic systems. The Al2O3-parylene C bi-layer was used to encapsulate interdigitated electrodes, which were tested invitro by soak testing in phosphate buffered saline solution at body temperature (37 degree C) and elevated temperatures (57 degree C and 67 degree C) for accelerated lifetime testing up to 5 months. Leakage current and electrochemical impedance spectroscopy were measured for evaluating the integrity and insulation performance of the coating. Leakage current was stably about 15 pA at 5 V dc, and impedance was constantly about 3.5 M[ohm at 1 kHz by using electrochemical impedance spectroscopy for samples under 67 degree C about 5 months (approximately equivalent to 40 months at 37 degree C). Alumina and parylene coating lasted at least 3 times longer than parylene coated samples tested at 80 degree C. The excellent insulation performance of the encapsulation shows its potential usefulness for chronic implants.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 0003-6951</identifier><identifier>DOI: 10.1063/1.4748322</identifier><identifier>PMID: 23024377</identifier><language>eng</language><publisher>American Institute of Physics</publisher><subject>Aluminum oxide ; Biophysics and Bio-Inspired Systems ; Coating ; Deposition ; Electrochemical impedance spectroscopy ; Encapsulation ; Insulation ; Leakage current ; Surgical implants</subject><ispartof>Applied physics letters, 2012-08, Vol.101 (9)</ispartof><rights>Copyright © 2012 American Institute of Physics 2012 American Institute of Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids></links><search><creatorcontrib>Xie, Xianzong</creatorcontrib><creatorcontrib>Rieth, Loren</creatorcontrib><creatorcontrib>Merugu, Srinivas</creatorcontrib><creatorcontrib>Tathireddy, Prashant</creatorcontrib><creatorcontrib>Solzbacher, Florian</creatorcontrib><title>Plasma-assisted atomic layer deposition of Al2O3 and parylene C bi-layer encapsulation for chronic implantable electronics</title><title>Applied physics letters</title><description>Encapsulation of biomedical implants with complex three dimensional geometries is one of the greatest challenges achieving long-term functionality and stability. This report presents an encapsulation scheme that combines Al2O3 by atomic layer deposition with parylene C for implantable electronic systems. The Al2O3-parylene C bi-layer was used to encapsulate interdigitated electrodes, which were tested invitro by soak testing in phosphate buffered saline solution at body temperature (37 degree C) and elevated temperatures (57 degree C and 67 degree C) for accelerated lifetime testing up to 5 months. Leakage current and electrochemical impedance spectroscopy were measured for evaluating the integrity and insulation performance of the coating. Leakage current was stably about 15 pA at 5 V dc, and impedance was constantly about 3.5 M[ohm at 1 kHz by using electrochemical impedance spectroscopy for samples under 67 degree C about 5 months (approximately equivalent to 40 months at 37 degree C). Alumina and parylene coating lasted at least 3 times longer than parylene coated samples tested at 80 degree C. The excellent insulation performance of the encapsulation shows its potential usefulness for chronic implants.</description><subject>Aluminum oxide</subject><subject>Biophysics and Bio-Inspired Systems</subject><subject>Coating</subject><subject>Deposition</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Encapsulation</subject><subject>Insulation</subject><subject>Leakage current</subject><subject>Surgical implants</subject><issn>0003-6951</issn><issn>0003-6951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpVj81OwzAQhC0EolA48AY-ckmxvUmTXpCqij-pUjnAOVo7a2rkxCFOkMrTE7U9wGVnd2f0ScPYjRQzKeZwJ2dpnhag1Am7EEJAMl9k8vTPPmGXMX6OZ6YAztlEgVAp5PkF-3n1GGtMMEYXe6o49qF2hnvcUccrakN0vQsND5YvvdoAx6biLXY7Tw3xFdcuOWSpMdjGweM-bkPHzbYLzchydeux6VF74uTJ9Pt3vGJnFn2k66NO2fvjw9vqOVlvnl5Wy3XSKlH0SU4y15VQBGCFlDqXGqylLKMq10alWFhMC1NJQwYsFmYuLJDKtC4W45jDlN0fuO2ga6oMNX2Hvmw7V481yoCu_O80blt-hO8S0hSkhBFwewR04Wug2Je1i4b8WIrCEEsJCpRMiwzgF6u0e1Q</recordid><startdate>20120827</startdate><enddate>20120827</enddate><creator>Xie, Xianzong</creator><creator>Rieth, Loren</creator><creator>Merugu, Srinivas</creator><creator>Tathireddy, Prashant</creator><creator>Solzbacher, Florian</creator><general>American Institute of Physics</general><scope>7QF</scope><scope>7QQ</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20120827</creationdate><title>Plasma-assisted atomic layer deposition of Al2O3 and parylene C bi-layer encapsulation for chronic implantable electronics</title><author>Xie, Xianzong ; Rieth, Loren ; Merugu, Srinivas ; Tathireddy, Prashant ; Solzbacher, Florian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p208t-7e17bd02e33f011b71b3ffe55ed7bc24a8fa48cd1cec3fa8c60f3e25bb895bb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Aluminum oxide</topic><topic>Biophysics and Bio-Inspired Systems</topic><topic>Coating</topic><topic>Deposition</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Encapsulation</topic><topic>Insulation</topic><topic>Leakage current</topic><topic>Surgical implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Xianzong</creatorcontrib><creatorcontrib>Rieth, Loren</creatorcontrib><creatorcontrib>Merugu, Srinivas</creatorcontrib><creatorcontrib>Tathireddy, Prashant</creatorcontrib><creatorcontrib>Solzbacher, Florian</creatorcontrib><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Xianzong</au><au>Rieth, Loren</au><au>Merugu, Srinivas</au><au>Tathireddy, Prashant</au><au>Solzbacher, Florian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasma-assisted atomic layer deposition of Al2O3 and parylene C bi-layer encapsulation for chronic implantable electronics</atitle><jtitle>Applied physics letters</jtitle><date>2012-08-27</date><risdate>2012</risdate><volume>101</volume><issue>9</issue><issn>0003-6951</issn><eissn>0003-6951</eissn><abstract>Encapsulation of biomedical implants with complex three dimensional geometries is one of the greatest challenges achieving long-term functionality and stability. This report presents an encapsulation scheme that combines Al2O3 by atomic layer deposition with parylene C for implantable electronic systems. The Al2O3-parylene C bi-layer was used to encapsulate interdigitated electrodes, which were tested invitro by soak testing in phosphate buffered saline solution at body temperature (37 degree C) and elevated temperatures (57 degree C and 67 degree C) for accelerated lifetime testing up to 5 months. Leakage current and electrochemical impedance spectroscopy were measured for evaluating the integrity and insulation performance of the coating. Leakage current was stably about 15 pA at 5 V dc, and impedance was constantly about 3.5 M[ohm at 1 kHz by using electrochemical impedance spectroscopy for samples under 67 degree C about 5 months (approximately equivalent to 40 months at 37 degree C). Alumina and parylene coating lasted at least 3 times longer than parylene coated samples tested at 80 degree C. The excellent insulation performance of the encapsulation shows its potential usefulness for chronic implants.</abstract><pub>American Institute of Physics</pub><pmid>23024377</pmid><doi>10.1063/1.4748322</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2012-08, Vol.101 (9) |
issn | 0003-6951 0003-6951 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3443113 |
source | AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection |
subjects | Aluminum oxide Biophysics and Bio-Inspired Systems Coating Deposition Electrochemical impedance spectroscopy Encapsulation Insulation Leakage current Surgical implants |
title | Plasma-assisted atomic layer deposition of Al2O3 and parylene C bi-layer encapsulation for chronic implantable electronics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A36%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasma-assisted%20atomic%20layer%20deposition%20of%20Al2O3%20and%20parylene%20C%20bi-layer%20encapsulation%20for%20chronic%20implantable%20electronics&rft.jtitle=Applied%20physics%20letters&rft.au=Xie,%20Xianzong&rft.date=2012-08-27&rft.volume=101&rft.issue=9&rft.issn=0003-6951&rft.eissn=0003-6951&rft_id=info:doi/10.1063/1.4748322&rft_dat=%3Cproquest_pubme%3E1323214853%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1323214853&rft_id=info:pmid/23024377&rfr_iscdi=true |