Proteogenomics of synaptosomal mitochondrial oxidative stress

Oxidative stress is frequently implicated in the pathology of neurodegenerative disease. The chief source of this stress is mitochondrial respiration, via the passage of reducing equivalents through the respiratory chain resulting in a small but potentially pathological production of superoxide. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Free radical biology & medicine 2012-09, Vol.53 (5), p.1048-1060
Hauptverfasser: Flynn, James M., Czerwieniec, Gregg A., Choi, Sung W., Day, Nicholas U., Gibson, Bradford W., Hubbard, Alan, Melov, Simon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Oxidative stress is frequently implicated in the pathology of neurodegenerative disease. The chief source of this stress is mitochondrial respiration, via the passage of reducing equivalents through the respiratory chain resulting in a small but potentially pathological production of superoxide. The superoxide that is produced during normal respiration is primarily detoxified within the mitochondria by superoxide dismutase 2 (Sod2), a key protein for maintaining mitochondrial function. Mitochondria are distributed throughout the soma of neurons, as well as along neuronal processes and at the synaptic terminus. This distribution of potentially independent mitochondria throughout the neuron, at distinct subcellular locations, allows for the possibility of regional subcellular deficits in mitochondrial function. There has been increasing interest in the quantification and characterization of messages and proteins at the synapse, because of its importance in neurodegenerative disease, most notably Alzheimer disease. Here, we report the transcriptomic and proteomic changes that occur in synaptosomes from frontal cortices of Sod2 null mice. Constitutively Sod2 null mice were differentially dosed with the synthetic catalytic antioxidant EUK-189, which can extend the life span of these mice, as well as uncovering or preventing neurodegeneration due to endogenous oxidative stress. This approach facilitated insight into the quantification of trafficked messages and proteins to the synaptosome. We used two complementary methods to investigate the nature of the synaptosome under oxidative stress: either whole-genome gene expression microarrays or mass spectrometry-based proteomics using isobaric tagging for relative and absolute quantitation of proteins. We characterized the relative enrichment of gene ontologies at both gene and protein expression levels that occurs from mitochondrial oxidative stress in the synaptosome, which may lead to new avenues of investigation in understanding the regulation of synaptic function in normal and diseased states. As a result of using these approaches, we report for the first time an activation of the mTOR pathway in synaptosomes isolated from Sod2 null mice, confirmed by an upregulation of the phosphorylation of 4E-BP1. [Display omitted] ▸ We present a subcellular characterization of endogenous mitochondrial oxidative stress. ▸ Proteogenomics analysis uncovered novel interactions of oxidative stress. ▸ We observed increased mTOR s
ISSN:0891-5849
1873-4596
DOI:10.1016/j.freeradbiomed.2012.07.004