Maximal Force Characteristics of the Ca2+-Powered Actuator of Vorticella convallaria
The millisecond stalk contraction of the sessile ciliate Vorticella convallaria is powered by energy from Ca2+ binding to generate contractile forces of ∼10 nN. Its contractile organelle, the spasmoneme, generates higher contractile force under increased stall resistances. By applying viscous drag f...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2012-09, Vol.103 (5), p.860-867 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The millisecond stalk contraction of the sessile ciliate Vorticella convallaria is powered by energy from Ca2+ binding to generate contractile forces of ∼10 nN. Its contractile organelle, the spasmoneme, generates higher contractile force under increased stall resistances. By applying viscous drag force to contracting V. convallaria in a microfluidic channel, we observed that the mechanical force and work of the spasmoneme depended on the stalk length, i.e., the maximum tension (150–350 nN) and work linearly depended on the stalk length (∼2.5 nN and ∼30 fJ per 1 μm of the stalk). This stalk-length dependency suggests that motor units of the spasmoneme may be organized in such a way that the mechanical force and work of each unit cumulate in series along the spasmoneme. |
---|---|
ISSN: | 0006-3495 1542-0086 |
DOI: | 10.1016/j.bpj.2012.07.038 |