Improving the correction of eddy current-induced distortion in diffusion-weighted images by excluding signals from the cerebral spinal fluid

Abstract Iterative cross-correlation (ICC) is the most popularly used schema for correcting eddy current (EC)-induced distortion in diffusion-weighted imaging data, however, it cannot process data acquired at high b -values. We analyzed the error sources and affecting factors in parameter estimation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computerized medical imaging and graphics 2012-10, Vol.36 (7), p.542-551
Hauptverfasser: Liu, Wei, Liu, Xiaozheng, Yang, Guang, Zhou, Zhenyu, Zhou, Yongdi, Li, Gengying, Dubin, Marc, Bansal, Ravi, Peterson, Bradley S, Xu, Dongrong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Iterative cross-correlation (ICC) is the most popularly used schema for correcting eddy current (EC)-induced distortion in diffusion-weighted imaging data, however, it cannot process data acquired at high b -values. We analyzed the error sources and affecting factors in parameter estimation, and propose an efficient algorithm by expanding the ICC framework with a number of techniques: (1) pattern recognition for excluding brain ventricles; (2) ICC with the extracted ventricle for parameter initialization; (3) gradient-based entropy correlation coefficient (GECC) for optimal and finer registration. Experiments demonstrated that our method is robust with high accuracy and error tolerance, and outperforms other ICC-family algorithms and popular approaches currently in use.
ISSN:0895-6111
1879-0771
DOI:10.1016/j.compmedimag.2012.06.004