Assessment of bias in experimentally measured diffusion tensor imaging parameters using SIMEX

Diffusion tensor imaging enables in vivo investigation of tissue cytoarchitecture through parameter contrasts sensitive to water diffusion barriers at the micrometer level. Parameters are derived through an estimation process that is susceptible to noise and artifacts. Estimated parameters (e.g., fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine 2013-03, Vol.69 (3), p.891-902
Hauptverfasser: Lauzon, Carolyn B., Crainiceanu, Ciprian, Caffo, Brian C., Landman, Bennett A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Diffusion tensor imaging enables in vivo investigation of tissue cytoarchitecture through parameter contrasts sensitive to water diffusion barriers at the micrometer level. Parameters are derived through an estimation process that is susceptible to noise and artifacts. Estimated parameters (e.g., fractional anisotropy) exhibit both variability and bias relative to the true parameter value estimated from a hypothetical noise‐free acquisition. Herein, we present the use of the simulation and extrapolation (SIMEX) approach for post hoc assessment of bias in a massively univariate imaging setting and evaluate the potential of a SIMEX‐based bias correction. Using simulated data with known truth models, spatially varying fractional anisotropy bias error maps are evaluated on two independent and highly differentiated case studies. The stability of SIMEX and its distributional properties are further evaluated on 42 empirical diffusion tensor imaging datasets. Using gradient subsampling, an empirical experiment with a known true outcome is designed and SIMEX performance is compared to the original estimator. With this approach, we find SIMEX bias estimates to be highly accurate offering significant reductions in parameter bias for individual datasets and greater accuracy in averaged population‐based estimates. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.
ISSN:0740-3194
1522-2594
DOI:10.1002/mrm.24324