mGRASP enables mapping mammalian synaptic connectivity with light microscopy
In this paper, the authors report GFP reconstitution across synaptic partners (GRASP) adapted for synapse visualization in the mammalian brain. The GFP reconstitution across synaptic partners (GRASP) technique, based on functional complementation between two nonfluorescent GFP fragments, can be used...
Gespeichert in:
Veröffentlicht in: | Nature methods 2012-01, Vol.9 (1), p.96-102 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, the authors report GFP reconstitution across synaptic partners (GRASP) adapted for synapse visualization in the mammalian brain.
The GFP reconstitution across synaptic partners (GRASP) technique, based on functional complementation between two nonfluorescent GFP fragments, can be used to detect the location of synapses quickly, accurately and with high spatial resolution. The method has been previously applied in the nematode and the fruit fly but requires substantial modification for use in the mammalian brain. We developed mammalian GRASP (mGRASP) by optimizing transmembrane split-GFP carriers for mammalian synapses. Using
in silico
protein design, we engineered chimeric synaptic mGRASP fragments that were efficiently delivered to synaptic locations and reconstituted GFP fluorescence
in vivo
. Furthermore, by integrating molecular and cellular approaches with a computational strategy for the three-dimensional reconstruction of neurons, we applied mGRASP to both long-range circuits and local microcircuits in the mouse hippocampus and thalamocortical regions, analyzing synaptic distribution in single neurons and in dendritic compartments. |
---|---|
ISSN: | 1548-7091 1548-7105 |
DOI: | 10.1038/nmeth.1784 |