A Survey of the Protective Effects of Some Commercially available antioxidant supplements in genetic and chemically induced models of oxidative stress in Drosophila melanogaster
Oxidative stress remains one of the most well studied, albeit somewhat contentious, causes of aging-related changes in humans. Consequently, a large number of putative antioxidant compounds are freely available in myriad formulations that are often not tested for their efficacy or regulated for qual...
Gespeichert in:
Veröffentlicht in: | Experimental gerontology 2012-07, Vol.47 (9), p.712-722 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Oxidative stress remains one of the most well studied, albeit somewhat contentious, causes of aging-related changes in humans. Consequently, a large number of putative antioxidant compounds are freely available in myriad formulations that are often not tested for their efficacy or regulated for quality control. Following the development of a
Drosophila
model of oxidative-stress dependent aging (p38 MAP Kinase (p38K) mutants) in our laboratory, we attempted to test the protective effect of some of these commonly available formulations against oxidative stress, stress induced motor defects and reduced life span in the p38K model. As environmental exposure to oxidizing toxins has been linked to a variety of human diseases, we also tested the efficacy of these supplements on chemically-induced models of oxidative stress (Paraquat and Hydrogen Peroxide exposure). Our results suggest that when added as a dietary supplement, some of these over-the-counter compounds, notably containing Açai extracts, confer significant protection for both the p38K-dependent genetic model as well as the toxin-induced model. These products were also remarkably effective at dampening stress-induced expression of the detoxifying enzyme GSTD1 and eliminating Paraquat induced circadian rhythm deficits. Overall, our results suggest potential benefits of dietary supplementation with some of these compounds, especially under conditions of elevated oxidative stress. These findings should be assessed in the context of other studies that seek to identify active principles in these extracts, determine their effective dosage for human consumption and evaluate the safety of long-term prophylactic applications. |
---|---|
ISSN: | 0531-5565 1873-6815 |
DOI: | 10.1016/j.exger.2012.06.016 |