A unique role of RGS9-2 in the striatum as a positive or negative regulator of opiate analgesia

The signaling molecule RGS9-2 is a potent modulator of G-protein-coupled receptor function in striatum. Our earlier work revealed a critical role for RGS9-2 in the actions of the μ-opioid receptor (MOR) agonist morphine. In this study, we demonstrate that RGS9-2 may act as a positive or negative mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2011-04, Vol.31 (15), p.5617-5624
Hauptverfasser: Psifogeorgou, Kassi, Psigfogeorgou, Kassi, Terzi, Dimitra, Papachatzaki, Maria Martha, Varidaki, Artemis, Ferguson, Deveroux, Gold, Stephen J, Zachariou, Venetia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The signaling molecule RGS9-2 is a potent modulator of G-protein-coupled receptor function in striatum. Our earlier work revealed a critical role for RGS9-2 in the actions of the μ-opioid receptor (MOR) agonist morphine. In this study, we demonstrate that RGS9-2 may act as a positive or negative modulator of MOR-mediated behavioral responses in mice depending on the agonist administered. Paralleling these findings we use coimmunoprecipitation assays to show that the signaling complexes formed between RGS9-2 and Gα subunits in striatum are determined by the MOR agonist, and we identify RGS9-2 containing complexes associated with analgesic tolerance. In striatum, MOR activation promotes the formation of complexes between RGS9-2 and several Gα subunits, but morphine uniquely promotes an association between RGS9-2 and Gαi3. In contrast, RGS9-2/Gαq complexes assemble after acute application of several MOR agonists but not after morphine application. Repeated morphine administration leads to the formation of distinct complexes, which contain RGS9-2, Gβ5, and Gαq. Finally, we use simple pharmacological manipulations to disrupt RGS9-2 complexes formed during repeated MOR activation to delay the development of analgesic tolerance to morphine. Our data provide a better understanding of the brain-region-specific signaling events associated with opiate analgesia and tolerance and point to pharmacological approaches that can be readily tested for improving chronic analgesic responsiveness.
ISSN:0270-6474
1529-2401
DOI:10.1523/jneurosci.4146-10.2011