Requirement for BAFF and APRIL during B cell development in GALT

The effects of B cell-activating factor belonging to the TNF family (BAFF) on B cell maturation and survival in the mouse are relatively well understood. In contrast, little is known about the role of BAFF in B cell development in other mammals, such as rabbits, that use GALT to develop and maintain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 2010-05, Vol.184 (10), p.5527-5536
Hauptverfasser: Yeramilli, Venkata A, Knight, Katherine L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effects of B cell-activating factor belonging to the TNF family (BAFF) on B cell maturation and survival in the mouse are relatively well understood. In contrast, little is known about the role of BAFF in B cell development in other mammals, such as rabbits, that use GALT to develop and maintain the B cell compartment. We examined the expression and requirement of BAFF and a proliferation-inducing ligand (APRIL) during peripheral B cell development in young rabbits. By neutralizing BAFF and APRIL in neonates with a soluble decoy receptor, transmembrane activator calcium modulator and cyclophilin ligand interactor-Fc, we found a marked reduction in the number of peripheral B cells, but found no change in the bone marrow (BM) compartment. In the appendix, the size and number of proliferating B cell follicles were greatly reduced, demonstrating that although BAFF/APRIL is dispensable for B cell development in BM, it is required for B cell development in GALT. We found that all rabbit B cells expressed BAFF receptor 3, but did not bind rBAFF, suggesting that the BAFF-binding receptors (BBRs) are bound by endogenous soluble BAFF. Further, we found that B cells themselves express BAFF, suggesting that the soluble BAFF bound to BBRs may be endogenously produced and stimulate B cells in an autocrine fashion. Additionally, we propose that this chronic occupancy of BBRs on B cells may provide a tonic and/or survival signal for the maintenance of peripheral B cells in adults after B lymphopoiesis is arrested in BM.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.1000146