The Arabidopsis Homolog of the Mammalian OS-9 Protein Plays a Key Role in the Endoplasmic Reticulum-Associated Degradation of Misfolded Receptor-Like Kinases
The endoplasmic reticulum-associated degradation (ERAD) is a highly conserved mechanism to remove mis- folded membrane/secretory proteins from the endoplasmic reticulum (ER). While many of the individual components of the ERAD machinery are well characterized in yeast and mammals, our knowledge of a...
Gespeichert in:
Veröffentlicht in: | Molecular plant 2012-07, Vol.5 (4), p.929-940 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The endoplasmic reticulum-associated degradation (ERAD) is a highly conserved mechanism to remove mis- folded membrane/secretory proteins from the endoplasmic reticulum (ER). While many of the individual components of the ERAD machinery are well characterized in yeast and mammals, our knowledge of a plant ERAD process is rather limited. Here, we report a functional study of an Arabidopsis homolog (AtOS9) of an ER luminal lectin Yos9 (OS-9 in mammals) that recognizes a unique asparagine-linked glycan on misfolded proteins. We discovered that AtOS9 is an ER-Iocalized glyco- protein that is co-expressed with many known/predicted ER chaperones. AT-DNA insertional atos9-t mutation blocks the degradation of a structurally imperfect yet biochemically competent brassinosteroid (BR) receptor bril-9, causing its increased accumulation in the ER and its consequent leakage to the cell surface responsible for restoring the BR sensitivity and suppressing the dwarfism of the bril-9 mutant. In addition, we identified a missense mutation in AtOS9 in a recently discovered ERAD mutant ems-rnutagenized bril suppressor 6 (ebs6-1). Moreover, we showed that atos9-t also inhibits the ERAD of bril-5, another ER-retained BR receptor, and a misfolded EFR, a BRIl-like receptor for the bacterial translation elongation factor EF-Tu. Furthermore, we found that AtOS9 interacted biochemically and genetically with EBS5, an Arabidopsis homolog of the yeast Hrd3/mammalian SellL known to collaborate with Yos9/OS-9 to select ERAD clients. Taken together, our results demonstrated a functional role of AtOS9 in a plant ERAD process that degrades misfolded receptor-like kinases. |
---|---|
ISSN: | 1674-2052 1752-9867 |
DOI: | 10.1093/mp/sss042 |