C-Met Inhibitor MK-8003 Radiosensitizes c-Met–Expressing Non–Small-Cell Lung Cancer Cells With Radiation-Induced c-Met–Expression

The radiation doses used to treat unresectable lung cancer are often limited by the proximity of normal tissues. Overexpression of c-Met, a receptor tyrosine kinase, occurs in about half of non–small-cell lung cancers (NSCLCs) and has been associated with resistance to radiation therapy and poor pat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thoracic oncology 2012-08, Vol.7 (8), p.1211-1217
Hauptverfasser: Bhardwaj, Vikas, Zhan, Yanai, Cortez, Maria Angelica, Ang, Kie Kian, Molkentine, David, Munshi, Anupama, Raju, Uma, Komaki, Ritsuko, Heymach, John V., Welsh, James
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The radiation doses used to treat unresectable lung cancer are often limited by the proximity of normal tissues. Overexpression of c-Met, a receptor tyrosine kinase, occurs in about half of non–small-cell lung cancers (NSCLCs) and has been associated with resistance to radiation therapy and poor patient survival. We hypothesized that inhibiting c-Met would increase the sensitivity of NSCLC cells to radiation, enhancing the therapeutic ratio, which may potentially translate into improved local control. We tested the radiosensitivity of two high-c-Met–expressing NSCLC lines, EBC-1 and H1993, and two low-c-Met–expressing lines, A549 and H460, with and without the small-molecule c-Met inhibitor MK-8033. Proliferation and protein expression were measured with clonogenic survival assays and Western blotting, respectively. γ-H2AX levels were evaluated by immunofluorescence staining. MK-8033 radiosensitized the high-c-Met–expressing EBC-1 and H1993 cells but not the low-c-Met–expressing cell lines A549 and H460. However, irradiation of A549 and H460 cells increased the expression of c-Met protein at 30 minutes after the irradiation. Subsequent targeting of this up-regulated c-Met by using MK-8033 followed by a second radiation dose reduced the clonogenic survival of both A549 and H460 cells. MK-8033 reduced the levels of radiation-induced phosphorylated (activated) c-Met in A549 cells. These results suggest that inhibition of c-Met could be an effective strategy to radiosensitize NSCLC tumors with high basal c-Met expression or tumors that acquired resistance to radiation because of up-regulation of c-Met.
ISSN:1556-0864
1556-1380
DOI:10.1097/JTO.0b013e318257cc89