Regulation of AT1R expression through HuR by insulin

Angiotensin II type 1 receptor (AT1R) has a pathophysiological role in hypertension, atherosclerosis and heart failure. Type 2 diabetes is hyperinsulinemic state and a major risk factor for atherosclerosis and hypertension. It is known that hyperinsulinemia upregulates AT1R expression post-transcrip...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2012-07, Vol.40 (12), p.5250-5261
Hauptverfasser: Paukku, Kirsi, Backlund, Michael, De Boer, Rudolf A, Kalkkinen, Nisse, Kontula, Kimmo K, Lehtonen, Jukka Y A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Angiotensin II type 1 receptor (AT1R) has a pathophysiological role in hypertension, atherosclerosis and heart failure. Type 2 diabetes is hyperinsulinemic state and a major risk factor for atherosclerosis and hypertension. It is known that hyperinsulinemia upregulates AT1R expression post-transcriptionally by increasing the half-life of AT1R mRNA, but little is known about the mechanism of this effect. In the present study, we first identified AT1R 3'-UTR as a mediator of insulin effect. Using 3'-UTR as a bait, we identified through analysis of insulin-stimulated cell lysates by affinity purification and mass spectrometry HuR as an insulin-regulated AT1R mRNA binding protein. By ribonucleoprotein immunoprecipitation, we found HuR binding to AT1R to be increased by insulin. Overexpression of HuR leads to increased AT1R expression in a 3'-UTR-dependent manner. Both insulin and HuR overexpression stabilize AT1R 3'-UTR and their responsive element within 3'-UTR are located within the same region. Cell fractionation demonstrated that insulin induced HuR translocation from nucleus to cytoplasm increased HuR binding to cytoplasmic AT1R 3'-UTR. Consistent with HuR translocation playing a mechanistic role in HuR effect, a reduction in the cytoplasmic levels of HuR either by silencing of HuR expression or by inhibition of HuR translocation into cytoplasm attenuated insulin response. These results show that HuR translocation to cytoplasm is enhanced by insulin leading to AT1R upregulation through HuR-mediated stabilization of AT1R mRNA.
ISSN:0305-1048
1362-4962
DOI:10.1093/nar/gks170