Resting-State Brain Networks in Type 1 Diabetic Patients With and Without Microangiopathy and Their Relation to Cognitive Functions and Disease Variables

Cognitive functioning depends on intact brain networks that can be assessed with functional magnetic resonance imaging (fMRI) techniques. We hypothesized that cognitive decrements in type 1 diabetes mellitus (T1DM) are associated with alterations in resting-state neural connectivity and that these c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetes (New York, N.Y.) N.Y.), 2012-07, Vol.61 (7), p.1814-1821
Hauptverfasser: VAN DUINKERKEN, Eelco, SCHOONHEIM, Menno M, SANZ-ARIGITA, Ernesto J, IJZERMAN, Richard G, MOLL, Annette C, SNOEK, Frank J, RYAN, Christopher M, KLEIN, Martin, DIAMANT, Michaela, BARKHOF, Frederik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cognitive functioning depends on intact brain networks that can be assessed with functional magnetic resonance imaging (fMRI) techniques. We hypothesized that cognitive decrements in type 1 diabetes mellitus (T1DM) are associated with alterations in resting-state neural connectivity and that these changes vary according to the degree of microangiopathy. T1DM patients with (MA(+): n = 49) and without (MA(-): n = 52) microangiopathy were compared with 48 healthy control subjects. All completed a neuropsychological assessment and resting-state fMRI. Networks were identified using multisubject independent component analysis; specific group differences within each network were analyzed using the dual-regression method, corrected for confounding factors and multiple comparisons. Relative to control subjects, MA(-) patients showed increased connectivity in networks involved in motor and visual processes, whereas MA(+) patients showed decreased connectivity in networks involving attention, working memory, auditory and language processing, and motor and visual processes. Better information-processing speed and general cognitive ability were related to increased degree of connectivity. T1DM is associated with a functional reorganization of neural networks that varies, dependent on the presence or absence of microangiopathy.
ISSN:0012-1797
1939-327X
DOI:10.2337/db11-1358