Cynoglossus semilaevis thioredoxin: a reductase and an antioxidant with immunostimulatory property

Thioredoxin (Trx) is a small redox protein existing ubiquitously in all living organisms and plays an important role in multiple cellular processes, including transcriptional regulation and immune response. To date very few studies have been carried out to examine the function of piscine Trx. In thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell stress & chaperones 2012-07, Vol.17 (4), p.445-455
Hauptverfasser: Sun, Jin-sheng, Li, Yong-xin, Li Sun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Thioredoxin (Trx) is a small redox protein existing ubiquitously in all living organisms and plays an important role in multiple cellular processes, including transcriptional regulation and immune response. To date very few studies have been carried out to examine the function of piscine Trx. In this study, we identified and analyzed the function of a Trx homologue, CsTrx1, from half-smooth tongue sole (Cynoglossus semilaevis). The deduced amino acid sequence of CsTrx1 is composed of 107 residues and shares 54.1-60.8% overall identities with the Trx of other teleosts. CsTrx1 contains the highly conserved CXXC motif, which in mammals is known to be the active site, in the form of CQPC. Expression of CsTrx1 as determined by quantitative real-time reverse transcriptase PCR was highest in liver and upregulated in time-dependent manners by bacterial infection and by exposure to iron, copper, and hydrogen peroxide. Purified recombinant CsTrx1 (rCsTrx1) exhibited insulin disulfide reducíase activity and antioxidant activity, both which, however, were lost when the two cysteine residues in the CQPC motif were mutated to serine. Further analysis showed that rCsTrx1 was able to stimulate the proliferation of head kidney leukocytes, upregulate the expression of immune relevant genes, and enhance the resistance of leukocytes against bacterial infection. Taken together, these results indicate that CsTrx1 is a biologically active reductase and an antioxidant that requires the CXXC motif for activity and that CsTrx1 possesses cytokine-like immunoregulatory property. These results suggest a role for CsTrx1 in protecting cells against oxidative stress caused by oxidant exposure and pathogen infection.
ISSN:1355-8145
1466-1268
DOI:10.1007/s12192-012-0322-x