Mind bomb 1 is required for pancreatic β-cell formation
During early pancreatic development, Notch signaling represses differentiation of endocrine cells and promotes proliferation of Nkx6-1+Ptf1a+ multipotent progenitor cells (MPCs). Later, antagonistic interactions between Nkx6 transcription factors and Ptf1a function to segregate MPCs into distal Nkx6...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2012-05, Vol.109 (19), p.7356-7361 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | During early pancreatic development, Notch signaling represses differentiation of endocrine cells and promotes proliferation of Nkx6-1+Ptf1a+ multipotent progenitor cells (MPCs). Later, antagonistic interactions between Nkx6 transcription factors and Ptf1a function to segregate MPCs into distal Nkx6-1–Ptf1a+ acinar progenitors and proximal Nkx6-1+Ptf1a– duct and β-cell progenitors. Distal cells are initially multipotent, but evolve into unipotent, acinar cell progenitors. Conversely, proximal cells are bipotent and give rise to duct cells and late-born endocrine cells, including the insulin producing β-cells. However, signals that regulate proximodistal (P-D) patterning and thus formation of β-cell progenitors are unknown. Here we show that Mind bomb 1 (Mib1) is required for correct P-D patterning of the developing pancreas and β-cell formation. We found that endoderm-specific inactivation of Mib1 caused a loss of Nkx6-1+Ptf1a– and Hnf1β+ cells and a corresponding loss of Neurog3+ endocrine progenitors and β-cells. An accompanying increase in Nkx6-1–Ptf1a+ and amylase+ cells, occupying the proximal domain, suggests that proximal cells adopt a distal fate in the absence of Mib1 activity. Impeding Notch-mediated transcriptional activation by conditional expression of dominant negative Mastermind-like 1 (Maml1) resulted in a similarly distorted P-D patterning and suppressed β-cell formation, as did conditional inactivation of the Notch target gene Hes1. Our results reveal iterative use of Notch in pancreatic development to ensure correct P-D patterning and adequate β-cell formation. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.1203605109 |