CONTRA: copy number analysis for targeted resequencing

In light of the increasing adoption of targeted resequencing (TR) as a cost-effective strategy to identify disease-causing variants, a robust method for copy number variation (CNV) analysis is needed to maximize the value of this promising technology. We present a method for CNV detection for TR dat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics (Oxford, England) England), 2012-05, Vol.28 (10), p.1307-1313
Hauptverfasser: JASON LI, LUPAT, Richard, AMARASINGHE, Kaushalya C, THOMPSON, Ella R, DOYLE, Maria A, RYLAND, Georgina L, TOTHILL, Richard W, HALGAMUGE, Saman K, CAMPBELL, Ian G, GORRINGE, Kylie L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In light of the increasing adoption of targeted resequencing (TR) as a cost-effective strategy to identify disease-causing variants, a robust method for copy number variation (CNV) analysis is needed to maximize the value of this promising technology. We present a method for CNV detection for TR data, including whole-exome capture data. Our method calls copy number gains and losses for each target region based on normalized depth of coverage. Our key strategies include the use of base-level log-ratios to remove GC-content bias, correction for an imbalanced library size effect on log-ratios, and the estimation of log-ratio variations via binning and interpolation. Our methods are made available via CONTRA (COpy Number Targeted Resequencing Analysis), a software package that takes standard alignment formats (BAM/SAM) and outputs in variant call format (VCF4.0), for easy integration with other next-generation sequencing analysis packages. We assessed our methods using samples from seven different target enrichment assays, and evaluated our results using simulated data and real germline data with known CNV genotypes.
ISSN:1367-4803
1367-4811
DOI:10.1093/bioinformatics/bts146