Extensive Promoter-Centered Chromatin Interactions Provide a Topological Basis for Transcription Regulation
Higher-order chromosomal organization for transcription regulation is poorly understood in eukaryotes. Using genome-wide Chromatin Interaction Analysis with Paired-End-Tag sequencing (ChIA-PET), we mapped long-range chromatin interactions associated with RNA polymerase II in human cells and uncovere...
Gespeichert in:
Veröffentlicht in: | Cell 2012-01, Vol.148 (1-2), p.84-98 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Higher-order chromosomal organization for transcription regulation is poorly understood in eukaryotes. Using genome-wide Chromatin Interaction Analysis with Paired-End-Tag sequencing (ChIA-PET), we mapped long-range chromatin interactions associated with RNA polymerase II in human cells and uncovered widespread promoter-centered intragenic, extragenic, and intergenic interactions. These interactions further aggregated into higher-order clusters, wherein proximal and distal genes were engaged through promoter-promoter interactions. Most genes with promoter-promoter interactions were active and transcribed cooperatively, and some interacting promoters could influence each other implying combinatorial complexity of transcriptional controls. Comparative analyses of different cell lines showed that cell-specific chromatin interactions could provide structural frameworks for cell-specific transcription, and suggested significant enrichment of enhancer-promoter interactions for cell-specific functions. Furthermore, genetically-identified disease-associated noncoding elements were found to be spatially engaged with corresponding genes through long-range interactions. Overall, our study provides insights into transcription regulation by three-dimensional chromatin interactions for both housekeeping and cell-specific genes in human cells.
[Display omitted]
► Promoter-centered interactions are complex and widespread ► Higher-order chromatin architectures facilitate active and coordinated transcription ► Interacting promoters possess combinatorial regulatory functions ► Large enhancer-promoter repertoire allows functional annotation of noncoding elements
Higher order chromatin interactions between promoters synergistically promote transcription of clustered genes. These interactions indicate a topological, combinatorial mechanism of transcriptional and also suggest functions for noncoding elements, including those associated with disease, by connecting them to target genes. |
---|---|
ISSN: | 0092-8674 1097-4172 |
DOI: | 10.1016/j.cell.2011.12.014 |