Modulation of gurken translation by insulin and TOR signaling in Drosophila
Localized Gurken (Grk) translation specifies the anterior-posterior and dorsal-ventral axes of the developing Drosophila oocyte; spindle-class females lay ventralized eggs resulting from inefficient grk translation. This phenotype is thought to result from inhibition of the Vasa RNA helicase. In a s...
Gespeichert in:
Veröffentlicht in: | Journal of cell science 2012-03, Vol.125 (Pt 6), p.1407-1419 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Localized Gurken (Grk) translation specifies the anterior-posterior and dorsal-ventral axes of the developing Drosophila oocyte; spindle-class females lay ventralized eggs resulting from inefficient grk translation. This phenotype is thought to result from inhibition of the Vasa RNA helicase. In a screen for modifiers of the eggshell phenotype in spn-B flies, we identified a mutation in the lnk gene. We show that lnk mutations restore Grk expression but do not suppress the persistence of double-strand breaks nor other spn-B phenotypes. This suppression does not affect Egfr directly, but rather overcomes the translational block of grk messages seen in spindle mutants. Lnk was recently identified as a component of the insulin/insulin-like growth factor signaling (IIS) and TOR pathway. Interestingly, direct inhibition of TOR with rapamycin in spn-B or vas mutant mothers can also suppress the ventralized eggshell phenotype. When dietary protein is inadequate, reduced IIS-TOR activity inhibits cap-dependent translation by promoting the activity of the translation inhibitor eIF4E-binding protein (4EBP). We hypothesize that reduced TOR activity promotes grk translation independent of the canonical Vasa- and cap-dependent mechanism. This model might explain how flies can maintain the translation of developmentally important transcripts during periods of nutrient limitation when bulk cap-dependent translation is repressed. |
---|---|
ISSN: | 0021-9533 1477-9137 |
DOI: | 10.1242/jcs.090381 |