Volar/dorsal compressive mechanical behavior of the transverse carpal ligament
Abstract Mechanical insult to the median nerve caused by contact with the digital flexor tendons and/or carpal tunnel boundaries may contribute to the development of carpal tunnel syndrome. Since the transverse carpal ligament (TCL) comprises the volar boundary of the carpal tunnel, its mechanics in...
Gespeichert in:
Veröffentlicht in: | Journal of biomechanics 2012-04, Vol.45 (7), p.1180-1185 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract Mechanical insult to the median nerve caused by contact with the digital flexor tendons and/or carpal tunnel boundaries may contribute to the development of carpal tunnel syndrome. Since the transverse carpal ligament (TCL) comprises the volar boundary of the carpal tunnel, its mechanics in part govern the potential insult to the median nerve. Using unconfined compression testing in combination with a finite element-based optimization process, nominal stiffness measurements and first-order Ogden hyperelastic material coefficients ( μ and α ) were determined to describe the volar/dorsal compressive behavior of the TCL. Five different locations on the TCL were tested, three of which were deep to the origins of the thenar and hypothenar muscles. The average (± standard deviation) low-strain and high-strain TCL stiffness values in compression sites outside the muscle attachment region were 3.6 N/mm (±2.7) and 28.0 N/mm (±20.2), respectively. The average stiffness values at compression sites with muscle attachments were notably lower, with low-strain and high-strain stiffness values of 1.2 N/mm (±0.5) and 9.7 N/mm (±4.8), respectively. The average Ogden coefficients for the muscle attachment region were 51.6 kPa (±16.5) for μ and 16.5 (±2.0) for α , while coefficients for the non-muscle attachment region were 117.8 kPa (±86.8) for μ and 17.2 (±1.6) for α . These TCL compressive mechanical properties can help inprove computational models, which can be used to provide insight into the mechanisms of median nerve injury leading to the onset of carpal tunnel syndrome symptoms. |
---|---|
ISSN: | 0021-9290 1873-2380 |
DOI: | 10.1016/j.jbiomech.2012.01.048 |