Retinal Vascular Geometry Predicts Incident Renal Dysfunction in Young People With Type 1 Diabetes

OBJECTIVE: To examine the relationship between retinal vascular geometry parameters and development of incident renal dysfunction in young people with type 1 diabetes. RESEARCH DESIGN AND METHODS: This was a prospective cohort study of 511 adolescents with type 1 diabetes of at least 2 years duratio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetes care 2012-03, Vol.35 (3), p.599-604
Hauptverfasser: Benitez-Aguirre, Paul Z, Sasongko, Muhammad Bayu, Craig, Maria E, Jenkins, Alicia J, Cusumano, Janine, Cheung, Ning, Wong, Tien Yin, Donaghue, Kim C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:OBJECTIVE: To examine the relationship between retinal vascular geometry parameters and development of incident renal dysfunction in young people with type 1 diabetes. RESEARCH DESIGN AND METHODS: This was a prospective cohort study of 511 adolescents with type 1 diabetes of at least 2 years duration, with normal albumin excretion rate (AER) and no retinopathy at baseline while attending an Australian tertiary-care hospital. AER was quantified using three overnight, timed urine specimen collections and early renal dysfunction was defined as AER >7.5 μg/min. Retinal vascular geometry (including length-to-diameter ratio [LDR] and simple tortuosity [ST]) was quantified from baseline retinal photographs. Generalized estimating equations were used to examine the relationship between incident renal dysfunction and baseline venular LDR and ST, adjusting for age, diabetes duration, glycated hemoglobin (A1C), blood pressure (BP), BMI, and cholesterol. RESULTS: Diabetes duration at baseline was 4.8 (IQR 3.3–7.5) years. After a median 3.7 (2.3–5.7) years follow-up, 34% of participants developed incident renal dysfunction. In multivariate analysis, higher retinal venular LDR (odds ratio 1.7, 95% CI 1.2–2.4; quartile 4 vs. 1–3) and lower venular ST (1.6, 1.1–2.2; quartile 1 vs. 2–4) predicted incident renal dysfunction. CONCLUSIONS: Retinal venular geometry independently predicted incident renal dysfunction in young people with type 1 diabetes. These noninvasive retinal measures may help to elucidate early mechanistic pathways for microvascular complications. Retinal venular geometry may be a useful tool to identify individuals at high risk of renal disease early in the course of diabetes.
ISSN:0149-5992
1935-5548
DOI:10.2337/dc11-1177