5-Aminolevulinic acid-induced protoporphyrin IX fluorescence as immediate intraoperative indicator to improve the safety of malignant or high-grade brain tumor diagnosis in frameless stereotactic biopsies

Background Frameless stereotactic biopsies are replacing frame-based stereotaxy as a diagnostic approach to brain lesions. In order to avoid a sampling bias or negative histology, multiple specimens are often taken. This in turn increases the risk of hemorrhagic complications. Objective We present t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta neurochirurgica 2012-04, Vol.154 (4), p.585-588
Hauptverfasser: von Campe, Gord, Moschopulos, Michael, Hefti, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background Frameless stereotactic biopsies are replacing frame-based stereotaxy as a diagnostic approach to brain lesions. In order to avoid a sampling bias or negative histology, multiple specimens are often taken. This in turn increases the risk of hemorrhagic complications. Objective We present the use of 5-aminolevulinic acid (5-ALA)-induced protoporphyrin IX fluorescence in frameless stereotaxy to improve the procedure duration and yield, and thereby reduce the risk of complications. Methods Patients with suspected high-grade brain tumors are given 5-ALA 4 h prior to stereotactic biopsy. The biopsy needle is guided to the target using frameless stereotaxy based either on preoperative images or combined with intraoperative MRI sequences. The specimen is illuminated with blue light to look for fluorescence. In case of a positive fluorescence within the tissue sample, no frozen sections are obtained, and no further specimens are taken. Results The samples of 13 patients revealed a positive fluorescence and were histologically confirmed as malignant or high-grade brain neoplasms. four cases were fluorescence-negative, requiring frozen section confirmation and/or multiple samples. In theses cases histology was either nonspecific gliotic changes or low-grade tumors. There were no complications related to the additional use of 5-ALA. Conclusion 5-ALA fluorescence in stereotactic biopsies can increase the safety and accuracy of these procedures by reducing sampling errors and eliminating the need for multiple samples and/or frozen section verification, creating a more accurate, faster and safer procedure for cases of suspected malignant or high-grade brain tumors situated in deep or eloquent areas.
ISSN:0001-6268
0942-0940
DOI:10.1007/s00701-012-1290-8