Cadmium associated with inhaled cadmium oxide nanoparticles impacts fetal and neonatal development and growth

One industrially important metal oxide nanoparticle (NP) is cadmium oxide (CdO). A study was performed using timed-pregnant CD-1 mice to determine if Cd associated with inhaled CdO NP could reach the placenta and adversely affect the developing fetus and/or neonate. Pregnant mice were exposed by inh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Toxicological sciences 2012-04, Vol.126 (2), p.478-486
Hauptverfasser: Blum, Jason L, Xiong, Judy Q, Hoffman, Carol, Zelikoff, Judith T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One industrially important metal oxide nanoparticle (NP) is cadmium oxide (CdO). A study was performed using timed-pregnant CD-1 mice to determine if Cd associated with inhaled CdO NP could reach the placenta and adversely affect the developing fetus and/or neonate. Pregnant mice were exposed by inhalation either every other day to 100 μg of freshly generated CdO/m(3) (exposure 1) or daily to 230 μg CdO/m(3) (exposure 2). In each exposure, mice were exposed to CdO NP or carrier gas (control) for 2.5 h from 4.5 days post coitus (dpc) through 16.5 dpc. At 17.5 dpc, fetuses and placentas from both exposures 1 and 2 were collected, measured, and weighed. A subgroup from the second exposure was allowed to give birth, and neonates were weighed daily until weaning. Cadmium in the uterus and placenta, as well as in other maternal organs, was elevated in NP-treated mice, but was undetectable in fetuses at 17.5 dpc. Daily inhalation of 230 μg CdO NP/m(3) decreased the incidence of pregnancy (i.e., no evidence of implantation) by 23%, delayed maternal weight gain, altered placental weight, and decreased fetal length, as well as delayed neonatal growth. This study demonstrates that inhalation of CdO NP during pregnancy adversely affects reproductive fecundity and alters fetal and postnatal growth of the developing offspring.
ISSN:1096-6080
1096-0929
DOI:10.1093/toxsci/kfs008