Measuring T₂ and T₁, and imaging T₂ without spin echoes
During adiabatic excitation, the nuclear magnetization in the transverse plane is subject to T(2) (spin-spin) relaxation, depending on the pulse length τ. Here, this property is exploited in a method of measuring T(2) using the ratio of NMR signals acquired with short and long-duration self-refocusi...
Gespeichert in:
Veröffentlicht in: | Journal of magnetic resonance (1997) 2012-01, Vol.214 (1), p.273-280 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | During adiabatic excitation, the nuclear magnetization in the transverse plane is subject to T(2) (spin-spin) relaxation, depending on the pulse length τ. Here, this property is exploited in a method of measuring T(2) using the ratio of NMR signals acquired with short and long-duration self-refocusing adiabatic pulses, without spin-echoes. This Dual-τ method is implemented with B(1)-insensitive rotation (BIR-4) pulses. It is validated theoretically with Bloch equation simulations independent of flip-angle, and experimentally in phantoms. Dual-τT(2) measurements are most accurate at short T(2) where results agree with standard spin-echo measures to within 10% for T(2) ≤ 100 ms. Dual-τ MRI performed with a long 0° BIR-4 pre-pulse provides quantitative T(2) imaging of phantoms and the human foot while preserving desired contrast and functional properties of the rest of the MRI sequence. A single 0° BIR-4 pre-pulse can provide T(2) contrast-weighted MRI and serve as a "T(2)-prep" sequence with a lower B(1) requirement than prior approaches. Finally, a Tri-τ experiment is introduced in which both τ and flip-angle are varied, enabling measurement of T(2), T(1) and signal intensity in just three acquisitions if flip-angles are well-characterized. These new methods can potentially save time and simplify relaxation measurements and/or contrast-weighted NMR and MRI. |
---|---|
ISSN: | 1090-7807 1096-0856 |
DOI: | 10.1016/j.jmr.2011.11.016 |