Intermembrane Docking Reactions Are Regulated by Membrane Curvature

The polymorphism of eukaryotic cellular membranes is a tightly regulated and well-conserved phenotype. Recent data have revealed important regulatory roles of membrane curvature on the spatio-temporal localization of proteins and in membrane fusion. Here we quantified the influence of membrane curva...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2011-12, Vol.101 (11), p.2693-2703
Hauptverfasser: Kunding, Andreas H., Mortensen, Michael W., Christensen, Sune M., Bhatia, Vikram K., Makarov, Ivan, Metzler, Ralf, Stamou, Dimitrios
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2703
container_issue 11
container_start_page 2693
container_title Biophysical journal
container_volume 101
creator Kunding, Andreas H.
Mortensen, Michael W.
Christensen, Sune M.
Bhatia, Vikram K.
Makarov, Ivan
Metzler, Ralf
Stamou, Dimitrios
description The polymorphism of eukaryotic cellular membranes is a tightly regulated and well-conserved phenotype. Recent data have revealed important regulatory roles of membrane curvature on the spatio-temporal localization of proteins and in membrane fusion. Here we quantified the influence of membrane curvature on the efficiency of intermembrane docking reactions. Using fluorescence microscopy, we monitored the docking of single vesicle–vesicle pairs of different diameter (30–200 nm) and therefore curvature, as mediated by neuronal soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and streptavidin-biotin. Surprisingly, the intermembrane docking efficiency exhibited an ∼30–60 fold enhancement as a function of curvature. In comparison, synaptotagmin and calcium accelerate SNARE-mediated fusion in vitro by a factor of 2–10. To explain this finding, we formulated a biophysical model. On the basis of our findings, we propose that membrane curvature can regulate intermembrane tethering reactions and consequently any downstream process, including the fusion of vesicles and possibly viruses with their target membranes.
doi_str_mv 10.1016/j.bpj.2011.09.059
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3297791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349511012380</els_id><sourcerecordid>1464509189</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-4407e2a5df1fa44d80b5f5daeea88a550c27c89af6049d676e013fe8a69dc5b33</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EokvhB3CBiAtcEmYS24lVCalavioVIQE9W44zWRyy8WInK_Xf49W2FXDoaWTNM69m_DD2HKFAQPl2KNrdUJSAWIAqQKgHbIWClzlAIx-yFQDIvOJKnLAnMQ4AWArAx-ykLEuJIJoVW19MM4UtbdtgJsree_vLTZvsGxk7Oz_F7DxQem2W0czUZe119uWWXS9hb-Yl0FP2qDdjpGc39ZRdffzwY_05v_z66WJ9fplbUfE55xxqKo3oeuwN510DrehFZ4hM0xghwJa1bZTpJXDVyVoSYNVTY6TqrGir6pS9O-bulnZLnaVpDmbUu-C2Jlxrb5z-tzO5n3rj97oqVV0rTAGvbwKC_71QnPXWRUvjmM7xS9QKa5SgVJPIN_eSyCUXoLBRCX31Hzr4JUzpI1IeiiRKHSA8Qjb4GAP1d1sj6INLPejkUh9calA6uUwzL_4-927iVl4CXh6B3nhtNsFFffU9JYgkGkuseSLOjgQlLXtHQUfraLLUuUB21p139yzwB7nFuFM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>911510199</pqid></control><display><type>article</type><title>Intermembrane Docking Reactions Are Regulated by Membrane Curvature</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><source>Cell Press Free Archives</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Kunding, Andreas H. ; Mortensen, Michael W. ; Christensen, Sune M. ; Bhatia, Vikram K. ; Makarov, Ivan ; Metzler, Ralf ; Stamou, Dimitrios</creator><creatorcontrib>Kunding, Andreas H. ; Mortensen, Michael W. ; Christensen, Sune M. ; Bhatia, Vikram K. ; Makarov, Ivan ; Metzler, Ralf ; Stamou, Dimitrios</creatorcontrib><description>The polymorphism of eukaryotic cellular membranes is a tightly regulated and well-conserved phenotype. Recent data have revealed important regulatory roles of membrane curvature on the spatio-temporal localization of proteins and in membrane fusion. Here we quantified the influence of membrane curvature on the efficiency of intermembrane docking reactions. Using fluorescence microscopy, we monitored the docking of single vesicle–vesicle pairs of different diameter (30–200 nm) and therefore curvature, as mediated by neuronal soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and streptavidin-biotin. Surprisingly, the intermembrane docking efficiency exhibited an ∼30–60 fold enhancement as a function of curvature. In comparison, synaptotagmin and calcium accelerate SNARE-mediated fusion in vitro by a factor of 2–10. To explain this finding, we formulated a biophysical model. On the basis of our findings, we propose that membrane curvature can regulate intermembrane tethering reactions and consequently any downstream process, including the fusion of vesicles and possibly viruses with their target membranes.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2011.09.059</identifier><identifier>PMID: 22261058</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Avidin - metabolism ; Calcium ; Cell Membrane - chemistry ; Cell Membrane - metabolism ; cell membranes ; Eukaryotes ; fluorescence microscopy ; Genotype &amp; phenotype ; Kinetics ; Ligands ; Lipid Bilayers - chemistry ; Lipid Bilayers - metabolism ; Membrane ; Membrane Fusion ; membrane proteins ; Membranes ; Microscopy, Fluorescence ; Models, Molecular ; phenotype ; Polymorphism ; Proteins ; receptors ; SNARE Proteins - metabolism ; Static Electricity ; Unilamellar Liposomes - chemistry ; Unilamellar Liposomes - metabolism ; viruses</subject><ispartof>Biophysical journal, 2011-12, Vol.101 (11), p.2693-2703</ispartof><rights>2011 Biophysical Society</rights><rights>Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Biophysical Society Dec 7, 2011</rights><rights>2011 by the Biophysical Society. 2011 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-4407e2a5df1fa44d80b5f5daeea88a550c27c89af6049d676e013fe8a69dc5b33</citedby><cites>FETCH-LOGICAL-c534t-4407e2a5df1fa44d80b5f5daeea88a550c27c89af6049d676e013fe8a69dc5b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3297791/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bpj.2011.09.059$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3548,27923,27924,45994,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22261058$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kunding, Andreas H.</creatorcontrib><creatorcontrib>Mortensen, Michael W.</creatorcontrib><creatorcontrib>Christensen, Sune M.</creatorcontrib><creatorcontrib>Bhatia, Vikram K.</creatorcontrib><creatorcontrib>Makarov, Ivan</creatorcontrib><creatorcontrib>Metzler, Ralf</creatorcontrib><creatorcontrib>Stamou, Dimitrios</creatorcontrib><title>Intermembrane Docking Reactions Are Regulated by Membrane Curvature</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>The polymorphism of eukaryotic cellular membranes is a tightly regulated and well-conserved phenotype. Recent data have revealed important regulatory roles of membrane curvature on the spatio-temporal localization of proteins and in membrane fusion. Here we quantified the influence of membrane curvature on the efficiency of intermembrane docking reactions. Using fluorescence microscopy, we monitored the docking of single vesicle–vesicle pairs of different diameter (30–200 nm) and therefore curvature, as mediated by neuronal soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and streptavidin-biotin. Surprisingly, the intermembrane docking efficiency exhibited an ∼30–60 fold enhancement as a function of curvature. In comparison, synaptotagmin and calcium accelerate SNARE-mediated fusion in vitro by a factor of 2–10. To explain this finding, we formulated a biophysical model. On the basis of our findings, we propose that membrane curvature can regulate intermembrane tethering reactions and consequently any downstream process, including the fusion of vesicles and possibly viruses with their target membranes.</description><subject>Avidin - metabolism</subject><subject>Calcium</subject><subject>Cell Membrane - chemistry</subject><subject>Cell Membrane - metabolism</subject><subject>cell membranes</subject><subject>Eukaryotes</subject><subject>fluorescence microscopy</subject><subject>Genotype &amp; phenotype</subject><subject>Kinetics</subject><subject>Ligands</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipid Bilayers - metabolism</subject><subject>Membrane</subject><subject>Membrane Fusion</subject><subject>membrane proteins</subject><subject>Membranes</subject><subject>Microscopy, Fluorescence</subject><subject>Models, Molecular</subject><subject>phenotype</subject><subject>Polymorphism</subject><subject>Proteins</subject><subject>receptors</subject><subject>SNARE Proteins - metabolism</subject><subject>Static Electricity</subject><subject>Unilamellar Liposomes - chemistry</subject><subject>Unilamellar Liposomes - metabolism</subject><subject>viruses</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1v1DAQhi0EokvhB3CBiAtcEmYS24lVCalavioVIQE9W44zWRyy8WInK_Xf49W2FXDoaWTNM69m_DD2HKFAQPl2KNrdUJSAWIAqQKgHbIWClzlAIx-yFQDIvOJKnLAnMQ4AWArAx-ykLEuJIJoVW19MM4UtbdtgJsree_vLTZvsGxk7Oz_F7DxQem2W0czUZe119uWWXS9hb-Yl0FP2qDdjpGc39ZRdffzwY_05v_z66WJ9fplbUfE55xxqKo3oeuwN510DrehFZ4hM0xghwJa1bZTpJXDVyVoSYNVTY6TqrGir6pS9O-bulnZLnaVpDmbUu-C2Jlxrb5z-tzO5n3rj97oqVV0rTAGvbwKC_71QnPXWRUvjmM7xS9QKa5SgVJPIN_eSyCUXoLBRCX31Hzr4JUzpI1IeiiRKHSA8Qjb4GAP1d1sj6INLPejkUh9calA6uUwzL_4-927iVl4CXh6B3nhtNsFFffU9JYgkGkuseSLOjgQlLXtHQUfraLLUuUB21p139yzwB7nFuFM</recordid><startdate>20111207</startdate><enddate>20111207</enddate><creator>Kunding, Andreas H.</creator><creator>Mortensen, Michael W.</creator><creator>Christensen, Sune M.</creator><creator>Bhatia, Vikram K.</creator><creator>Makarov, Ivan</creator><creator>Metzler, Ralf</creator><creator>Stamou, Dimitrios</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20111207</creationdate><title>Intermembrane Docking Reactions Are Regulated by Membrane Curvature</title><author>Kunding, Andreas H. ; Mortensen, Michael W. ; Christensen, Sune M. ; Bhatia, Vikram K. ; Makarov, Ivan ; Metzler, Ralf ; Stamou, Dimitrios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-4407e2a5df1fa44d80b5f5daeea88a550c27c89af6049d676e013fe8a69dc5b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Avidin - metabolism</topic><topic>Calcium</topic><topic>Cell Membrane - chemistry</topic><topic>Cell Membrane - metabolism</topic><topic>cell membranes</topic><topic>Eukaryotes</topic><topic>fluorescence microscopy</topic><topic>Genotype &amp; phenotype</topic><topic>Kinetics</topic><topic>Ligands</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipid Bilayers - metabolism</topic><topic>Membrane</topic><topic>Membrane Fusion</topic><topic>membrane proteins</topic><topic>Membranes</topic><topic>Microscopy, Fluorescence</topic><topic>Models, Molecular</topic><topic>phenotype</topic><topic>Polymorphism</topic><topic>Proteins</topic><topic>receptors</topic><topic>SNARE Proteins - metabolism</topic><topic>Static Electricity</topic><topic>Unilamellar Liposomes - chemistry</topic><topic>Unilamellar Liposomes - metabolism</topic><topic>viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kunding, Andreas H.</creatorcontrib><creatorcontrib>Mortensen, Michael W.</creatorcontrib><creatorcontrib>Christensen, Sune M.</creatorcontrib><creatorcontrib>Bhatia, Vikram K.</creatorcontrib><creatorcontrib>Makarov, Ivan</creatorcontrib><creatorcontrib>Metzler, Ralf</creatorcontrib><creatorcontrib>Stamou, Dimitrios</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kunding, Andreas H.</au><au>Mortensen, Michael W.</au><au>Christensen, Sune M.</au><au>Bhatia, Vikram K.</au><au>Makarov, Ivan</au><au>Metzler, Ralf</au><au>Stamou, Dimitrios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intermembrane Docking Reactions Are Regulated by Membrane Curvature</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2011-12-07</date><risdate>2011</risdate><volume>101</volume><issue>11</issue><spage>2693</spage><epage>2703</epage><pages>2693-2703</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>The polymorphism of eukaryotic cellular membranes is a tightly regulated and well-conserved phenotype. Recent data have revealed important regulatory roles of membrane curvature on the spatio-temporal localization of proteins and in membrane fusion. Here we quantified the influence of membrane curvature on the efficiency of intermembrane docking reactions. Using fluorescence microscopy, we monitored the docking of single vesicle–vesicle pairs of different diameter (30–200 nm) and therefore curvature, as mediated by neuronal soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and streptavidin-biotin. Surprisingly, the intermembrane docking efficiency exhibited an ∼30–60 fold enhancement as a function of curvature. In comparison, synaptotagmin and calcium accelerate SNARE-mediated fusion in vitro by a factor of 2–10. To explain this finding, we formulated a biophysical model. On the basis of our findings, we propose that membrane curvature can regulate intermembrane tethering reactions and consequently any downstream process, including the fusion of vesicles and possibly viruses with their target membranes.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22261058</pmid><doi>10.1016/j.bpj.2011.09.059</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2011-12, Vol.101 (11), p.2693-2703
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3297791
source Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE; Cell Press Free Archives; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Avidin - metabolism
Calcium
Cell Membrane - chemistry
Cell Membrane - metabolism
cell membranes
Eukaryotes
fluorescence microscopy
Genotype & phenotype
Kinetics
Ligands
Lipid Bilayers - chemistry
Lipid Bilayers - metabolism
Membrane
Membrane Fusion
membrane proteins
Membranes
Microscopy, Fluorescence
Models, Molecular
phenotype
Polymorphism
Proteins
receptors
SNARE Proteins - metabolism
Static Electricity
Unilamellar Liposomes - chemistry
Unilamellar Liposomes - metabolism
viruses
title Intermembrane Docking Reactions Are Regulated by Membrane Curvature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T05%3A23%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intermembrane%20Docking%20Reactions%20Are%20Regulated%20by%20Membrane%20Curvature&rft.jtitle=Biophysical%20journal&rft.au=Kunding,%20Andreas%C2%A0H.&rft.date=2011-12-07&rft.volume=101&rft.issue=11&rft.spage=2693&rft.epage=2703&rft.pages=2693-2703&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2011.09.059&rft_dat=%3Cproquest_pubme%3E1464509189%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=911510199&rft_id=info:pmid/22261058&rft_els_id=S0006349511012380&rfr_iscdi=true