Intermembrane Docking Reactions Are Regulated by Membrane Curvature
The polymorphism of eukaryotic cellular membranes is a tightly regulated and well-conserved phenotype. Recent data have revealed important regulatory roles of membrane curvature on the spatio-temporal localization of proteins and in membrane fusion. Here we quantified the influence of membrane curva...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2011-12, Vol.101 (11), p.2693-2703 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The polymorphism of eukaryotic cellular membranes is a tightly regulated and well-conserved phenotype. Recent data have revealed important regulatory roles of membrane curvature on the spatio-temporal localization of proteins and in membrane fusion. Here we quantified the influence of membrane curvature on the efficiency of intermembrane docking reactions. Using fluorescence microscopy, we monitored the docking of single vesicle–vesicle pairs of different diameter (30–200 nm) and therefore curvature, as mediated by neuronal soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and streptavidin-biotin. Surprisingly, the intermembrane docking efficiency exhibited an ∼30–60 fold enhancement as a function of curvature. In comparison, synaptotagmin and calcium accelerate SNARE-mediated fusion in vitro by a factor of 2–10. To explain this finding, we formulated a biophysical model. On the basis of our findings, we propose that membrane curvature can regulate intermembrane tethering reactions and consequently any downstream process, including the fusion of vesicles and possibly viruses with their target membranes. |
---|---|
ISSN: | 0006-3495 1542-0086 |
DOI: | 10.1016/j.bpj.2011.09.059 |