Fitting General Relative Risk Models for Survival Time and Matched Case-Control Analysis

Cox proportional hazards regression analysis of survival data and conditional logistic regression analysis of matched case-control data are methods that are widely used by epidemiologists. Standard statistical software packages accommodate only log-linear model forms, which imply exponential exposur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of epidemiology 2010-02, Vol.171 (3), p.377-383
Hauptverfasser: Langholz, Bryan, Richardson, David B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cox proportional hazards regression analysis of survival data and conditional logistic regression analysis of matched case-control data are methods that are widely used by epidemiologists. Standard statistical software packages accommodate only log-linear model forms, which imply exponential exposure-response functions and multiplicative interactions. In this paper, the authors describe methods for fitting non-log-linear Cox and conditional logistic regression models. The authors use data from a study of lung cancer mortality among Colorado Plateau uranium miners (1950-1982) to illustrate these methods for fitting general relative risk models to matched case-control control data, countermatched data with weights, d:m matching, and full cohort Cox regression using the SAS statistical package (SAS Institute Inc., Cary, North Carolina).
ISSN:0002-9262
1476-6256
DOI:10.1093/aje/kwp403